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ABSTRACT

We studied the mechanism of the magnetic energy release in the magnetosphere of strongly

magnetized neutron star (magnetars) to explain giant flares observed in soft gamma-ray

repeaters (SGRs). Since the magnetic field strength should be as large as 1015 Gauss

to supply the energy of SGR giant flares (1047 erg), we should deal with the relativistic

plasma in which the magnetic energy density exceeds that of the rest mass. As the model

of observed flares in magnetars, we adopt a model that a magnetic energy is released in

expanding magnetic loops. The magnetic loops emerging at the surface of the magnetar

expand relativistically when they are twisted by crustal motions at their footpoints. Inside

the magnetic loops, a current sheet is created. Magnetic reconnections taking place inside

the current sheet can be responsible for the observed flares in magnetars. In this thesis, we

studied the dynamics of the relativistically expanding magnetic loops and the magnetic

reconnection inside such loops.

For the purpose of understanding the dynamics of the expanding magnetic loops, we

obtained self-similar solutions of relativistically expanding magnetic loops. We neglect

stellar rotation and assume axisymmetry and a purely radial flow. As the magnetic loops

expand, the initial dipole magnetic field is stretched into the radial direction. Inside the

magnetic loops, shell structures appear behind the loop top. Pressure and density pulses

appear in the shell. Their amplitudes are larger for a thinner shell. When the expansion

speed approaches the light speed, the displacement current reduces the toroidal current

and modifies the distribution of the plasma lifted up from the central star. A current

sheet is formed inside the magnetic loops.

Next, we extended the Sweet-Parker model of magnetic reconnections for relativistic

plasma to study the magnetic energy release in the current sheet. The magnetic fields are

assumed to reconnect steadily in a small thin rectangular dissipation region. Applying

the conservation laws of mass and energy to the dissipation region, we obtain the relation

between the inflow and outflow. The model takes account of the pressure gradient between

the diffusion and outflow regions as well as increase in the inertia due to the thermal
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energy. For a fixed inflow velocity, the outflow velocity is faster when the ratio of the

Poynting to kinetic fluxes of the inflow (σi) is larger. The outflow velocity approaches

to the saturation value in the limit of large σi owing to the increase in the inertia. The

saturated velocity is reciprocal to square root of the inflow velocity. When the inflow

speed is slow and the Poynting flux is dominant, the outflow can be relativistic. Our

model reproduces the classical Sweet-Parker model when the magnetic energy density is

much smaller than that of the rest mass. The outflow velocity depends also on the aspect

ratio of the diffusion region, which is a free parameter in our model as well as in the

Sweet-Parker model.

We performed 2-dimensional Particle-In-Cell (PIC) simulations of the magnetic re-

connection to determine the reconnection rate for the relativistic magnetic reconnection,

which cannot be determined by MHD analysis. We assumed the collisionless pair plasma

and ignored the radiative processes. The results show that the outflow increases with σi

when σi < 1.

In the limit of large σi, the outflow velocity converges to the saturation value, which

is only mildly relativistic (Lorentz factor ∼ 2). We found that the plasma heating rate

is so large that the outflow cannot be ultra-relativistic. On the other hand, the thermal

enthalpy linearly increases with σi without saturation. These results are consistent with

those based on the MHD analysis. We conclude that the outflow velocity from the mag-

netic reconnection region is only mildly relativistic because the thermal energy mainly

contributes to the plasma inertia.

PIC simulations of relativistic magnetic reconnection produced nonthermal particles

accelerated in the reconnection region. We also carried out PIC simulations of the for-

mation of the current sheets by applying shear motions at the footpoints of the magnetic

loops. As the magnetic loops expand, Weibel instability grows ahead of the magnetic

loops. We found that magnetic reconnection taking place in the expanding magnetic

loops produce nonthermal particles with maximum energy ∼ 3 MeV.
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Chapter 1

Introduction

1.1 Introduction to Magnetar Flares

On December 27, 2004, solar system was exposed to an intense gamma-ray flux (∼
10 erg s−1 cm−2) we’d never experienced (Mereghetti et al. 2005; Palmer et al. 2005).

Because of the intense gamma-ray flux, almost all the gamma-ray detectors aboard the

satellites were saturated. The gamma-ray detector aboard GEOTAIL spacecraft, which

was launched with the aim of studying the structure and dynamics of the earth’s mag-

netosphere, was not saturated because of its low energy sensitivity. The initial spike of

the outburst was lasted for Tdur ∼ 0.2 sec with energies ∼ 1047 erg (Terasawa et al. 2005)

followed by a long pulsating tail (Palmer et al. 2005). The Russian spacecraft Coronas-

F also observed the flare without saturation (Mazets et al. 2005). When the outburst

happened, the spacecraft was occulted by the Earth. Nevertheless, the detector could

observe the outburst by observing the gamma-rays scattered by the Moon. It was the

first observation of a cosmic gamma-ray flare reflected from a celestial body. The outburst

is believed to be produced by a strongly magnetized neutron star called Soft Gamma-ray

Repeaters (SGRs).

The outburst from soft gamma-ray repeaters was first observed on January 7, 1979.

It was originally classified as Gamma-Ray Bursts (GRBs) with a short duration and a

soft spectrum (Mazets & Golenetskii 1981). This identification was drastically changed

soon. On March 5, 1979, a more energetic SGR burst was recorded from the same object

SGR 1806-20. This extraordinary burst began with the bright spike with the luminosity

peaking at ∼ 1045 erg s−1, followed by a long pulsating tail with 8 s period whose flux

decayed exponentially (Golenetskii et al. 1984). These multiple bursts clearly showed that

the SGRs are completely different from the GRBs since GRBs occur only once when a

1



2 CHAPTER 1. INTRODUCTION

SGR 1806-20

SGR 0526-66

SGR 1900+14 SGR 1627-41

Figure 1.1: Locations of four known SGR candidates. Three of them are located in the
plane of the Milky Way and one (SGR 0526-66) in the Large Magellanic Cloud (Image
Credit: Rob Duncan)

massive star collapses (see Campana et al. 2006, for details of the relation between the

GRBs and Supernova). For about 30 years from the first detection, many bursts have

been observed from the same SGRs.

From a phenomenological point of view, the bursts are classified into three types.

• short bursts These are the most common, short durations (∼ 0.1 − 0.2 sec), less

energetic SGR flares, the thermal spectrum, and the peak luminosity of ∼ 1041 −
1042 erg s−1. This luminosity is above the Eddington luminosity for the standard

neutron star, LE ∼ 1038 erg s−1. These bursts are observed both in a single and

multiple events.

• intermediate bursts This type of bursts are intermediate in the luminosity (∼
1041 − 1043 erg s−1) and duration (∼ 1− 60 sec) between the short bursts and giant

flares.

• giant flares This is the most energetic event in SGR flares. They have durations

with a few hundred seconds and luminosity of ∼ 1044 − 1047 erg s−1. The intense

spike is followed by a soft pulsating tail lasting hundreds of seconds.

Besides the three types of outbursts, persistent X-ray emissions from the SGRs are
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Figure 1.2: Time profile of some bursts in SGR 1900+14 and SGR1806-20 (Göğüş et al.
2001).

observed with luminosity ∼ 1034 − 1036 ergs−1 (Murakami et al. 1994; Rothschild et al.

1994; Vasisht et al. 1994). In the persistent emission, the X-ray pulse profile typically

has two maxima per cycle. The pulse profile can be fitted by a simple sinusoidal function

with period P ∼ 5 − 12 sec (see Fig. 1.16, for the light curve of the persistent emission).

The period of the X-ray pulse is considered to be the rotation period of the central star.

Four SGRs are found so far, three of which are in our Galaxy (SGR 18060-20, SGR

1900+14, SGR 1627-41) and one in the Large Magellanic Cloud (SGR 0526-66). Fig. 1.1

shows the location of the four known SGRs. Recently a new soft gamma-ray repeater

SGR 0501+4516 (Denisenko 2008; Palmer & Barthelmy 2008; Woods et al. 2008; Israel

et al. 2008) triggered four short bursts. Another new candidate SGR 1550-5418 is also

discovered (Krimm et al. 2008; Rea et al. 2008a; von Kienlin & Briggs 2008; Rea et al.

2008b).

1.1.1 The Properties of the Short Bursts

Short bursts are the most common bursts from SGRs. Their properties do not vary

between different sources (Aptekar et al. 2001; Göğüş et al. 2001). The bursts typically
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(sec)

Figure 1.3: Distribution of the duration from the four SGRs by the Konus detectors
between 1978 and 2000 (Aptekar et al. 2001).

show a rapid rise and a slower decay, which lasts <∼ 100 msec. Fig. 1.2 shows the light

curve of the typical short bursts (Göğüş et al. 2001). A number of bursts have multiple

peaks (middle plots in Fig. 1.2). Göğüş et al. (2001) showed that intervals between peaks

have a broad distribution, which suggests that each burst does not have a correlation,

and can be represented as the superposition of single bursts.

Although a number of broad-band spectroscopic studies of the short bursts were per-

formed by many groups, its spectral model is still under discussions. Aptekar et al. (2001)

found that the spectra can be well fitted by an optically-thin thermal bremsstrahlung

(OTTB) with characteristic temperature ranging from 20 to 40 keV above 15 − 20 keV.

Feroci et al. (2004) analyzed 1.5 − 100 keV BeppoSAX spectral properties from SGR

1900+14. They confirmed that the OTTB model provides acceptable spectral fit for en-

ergies higher than 15 keV, but it overestimates the flux at lower energies. Instead, they

proposed the two component blackbody model or a cutoff power-low model as the more

suitable spectral fitting model. Nakagawa et al. (2007) performed cumulative analysis

of 50 bursts detected by HETE-2 from SGR 1900+14. They concluded that the spectra
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Figure 1.4: Time histories of four intermediate bursts for SGR 1900+14 (left top, right
top) SGR 0526-66 (left bottom) and SGR 1627-41 (right bottom) (Woods & Thompson
2006).

from short bursts are well fitted by two blackbody model with temperatures Tl ∼ 4 keV

and Th ∼ 11 keV. These temperatures do not seem to depend on the burst intensity.

Fig. 1.3 shows the distribution of the duration of bursts in four known SGRs (Aptekar

et al. 2001). Note that the burst duration has a narrow distribution. Average duration

for SGR 0526-66, SGR 1900+14, SGR 1806-20, and SGR 1627-41 are 0.58 sec, 0.4 sec,

0.24 sec, and 0.26 sec, respectively. The coincidence of the duration between each SGR

burst suggests that each burst has the same typical size and the same mechanism.

1.1.2 The Properties of the Intermediate Bursts

The intermediate flares are intermediate in the luminosity and the duration between the

short burst and the giant flares. They are commonly observed in a few days or a few weeks

after the giant flares. This fact suggests that they represents the residual energy release

of the giant flare. Fig. 1.4 shows the time histories of four intermediate bursts. Their

energy range is 1041 − 1043(Ω/4π) erg, where Ω is the opening angle. Their durations are
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Figure 1.5: Time history of the photon counts during 600 ms of the giant flare from SGR
1806-20 (Terasawa et al. 2005).

typically a few seconds, but sometimes burst continues for several tens of seconds, longer

than the rotation period of the central star (see § 1.2.1).

The spectra of the intermediate bursts are similar to those of the short bursts (Olive

et al. 2004). The OTTB model overestimates the low energy (< 15 keV) flux. The

broadband spectra in the range 7 − 100 keV can be fitted by two component blackbody

model with temperatures Tl = 4.3 keV and Th = 9.8 keV. These properties are almost

common with those of short bursts. The radiation spectra do not change between each

burst.

1.1.3 The Properties of the Giant Flares

The giant flares are the most energetic SGR outbursts typically releasing the energy

∼ 1044 − 1047 erg in a short time (< 1 sec). Only three of giant flares have been recorded

in decades: SGR 0526-66 on March 5, 1979 (Mazets et al. 1979), SGR 1900+14 on August

27, 1998 (Hurley et al. 1999), and SGR 1806-20 on December 27, 2004 (Hurley et al. 2005;

Terasawa et al. 2005; Palmer et al. 2005; Mereghetti et al. 2005; Mazets et al. 2005).

The giant flare from SGR 1806-20 on December 27, 2004, is an exceptionally powerful

phenomenon with the hard spike lasting <∼ 0.2 sec. Fig. 1.5 shows the photon counts

during the first 600 ms of the giant flares from the Low Energy Particle (LEP) experiment
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Figure 1.6: Light curve of the SGR spike and tail from the Burst Alert Telescope (BAT)
on Swift at measured energy > 50 keV (Palmer et al. 2005) observed in SGR 1806-20.
The pulsation at the long tail corresponds to the rotation period of the central star.

on GEOTAIL (Terasawa et al. 2005). After the initial spike with duration ∼ 0.2 sec, the

photon count decays exponentially with an e-foldind time of ∼ 66 msec. Between t = 397

and 500 msec, several humps are observed. These humps may indicate the energy re-

injection from the central engine.

Fig. 1.6 shows the light curve of the initial spike and the tails from the Burst Alert

Telescope (BAT) on Swift (Palmer et al. 2005). The initial spike is followed by a long

(∼ 600 sec) pulsating tail. The pulsation period observed in the tail corresponds to the

rotation period of the central star (Hurley et al. 2005; Palmer et al. 2005). It is difficult

to infer the peak luminosity of the spike since almost all the instruments were saturated.

The GEOTAIL, whose detectors was not saturated during the peak, revealed an isotropic

peak luminosity of ∼ 2 × 1046d2
15 erg s−1, where d15 is the distance to the source in the

unit of 15 kpc. The tail luminosity which were measured by several instruments were

∼ 5 × 1043d2
15 erg s−1 comparable with the other giant flares. After about a week later,

a radio afterglow was detected (Cameron et al. 2005). Its fluence (0.3 erg cm−2) is a few

hundred times larger than that of the previous giant flares.

The spectrum of the SGR burst can be fitted with exponential-cutoff power law of

a photon index −0.2 for the spike, and a blackbody spectrum with the temperature

∼ 15−30 keV for the tail (Palmer et al. 2005). The fitting model of the spectra, however,
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Figure 1.7: Long-term evolution of the pulse period (top) and power-law photon index
(bottom) of SGR 1806-20 (Mereghetti et al. 2005).

is not conclusive because the events are rare.

Mereghetti et al. (2005) studied the low energy (< 10 keV) X-ray emission from the

SGR 1806-20 for two years before the giant flares. They found that the source went to

the different states of activity over the 2003-2004 period. Fig. 1.7 shows the time history

of the photon index and rotation period in the quiescent phase. The 2 − 10 keV flux

increased and reached the twice of the historical level observed previously. The spectrum

became hard with the power-law index decreasing from 2.2 to 1.5. The spin-down period

rate (time derivative of the rotation period) became higher than the value observed in the

previous year. After the giant flare event, these values returned to those in the quiescent

phase (Rea et al. 2006). The spectrum softened with the power-law index ∼ 1.8. The

flux decreased to the level 20% lower than the preflare phase, which is larger than the

quiescent phase. These results suggest that the burst energy is stored on the surface of

the central star (active region) before the giant flares. The active region emits radiation

with harder spectrum. The emergence of the active region results in the increase in the

moment of inertia (increase in the spin period). Giant flares are driven by release of the

stored energy. After the giant flare, the active region gradually evaporates in parallel to

the decrease in the moment of inertia and softening of the spectrum. The SGRs go back

to the quiescent phase.
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1.2 The Origin of the SGRs outbursts.

1.2.1 The Evidences of the Strongly Magnetized Neutron Star

As discussed in § 1.1, persistent X-ray emissions from SGRs are observed. The light

curve of the persistent emission can be fitted by the sinusoidal functions, similarly to

the Pulsars, which originate from the neutron star. The similarity between these objects

suggests that the SGRs flares also originate from the strongly magnetized star. In what

follows, we evaluate the magnetic field strength of the central star of SGRs.

Suppose that a neutron star of radius Rs and moment of inertia I rotates with angular

velocity Ω = 2π/P , where P is the rotation period. The rotational energy and its time

derivative are given as

Erot =
1

2
IΩ2 ' 2 × 1046I45P

−2 erg (1.2.1)

Ėrot = IΩΩ̇ ' −4 × 1031I45Ṗ−15P
−13 erg s−1, (1.2.2)

where P is in seconds, Ṗ−15 ≡ Ṗ /10−15, and I45 ≡ I/1045 g cm2. Ėrot is called spin-down

luminosity. Let us assume that a magnetic dipole field is attached to the central star with

the mean strength of the magnetic field at the stellar surface Bs. The magnetic dipole

field rotating in a vacuum will emit energy at rate

Lmag =
2

3c3
B2

s R
2
sΩ

4, (1.2.3)

where c is the light speed. Here, we assume that the magnetic moment is parallel to the

spin axis. From equation (1.2.2) and (1.2.3), the magnetic field strength Bs is estimated

as

Bs =

√
3

8π2

Ic3

R6
PṖ ' 3.2 × 1019I

1
2
45R

−3
s,6

√
PṖ G, (1.2.4)

where Rs,6 ≡ Rs/(106 cm). Fig. 1.8 shows the period (P ) versus period derivative (Ṗ )

for radio pulsars (crosses), Anomalous X-ray Pulsars (red squares), and Soft Gamma-

ray Repeaters (blue diamonds). Contours show the magnetic field strength given by

equation (1.2.4). The Anomalous X-ray pulsars (AXPs) also originate from the magnetars.

They are less active than the SGRs. Since the SGRs have the long rotation period

(P ∼ 5 − 12 sec) and smaller spin down age (P/Ṗ ∼ 103 − 105 yrs), the estimated

magnetic field strength is ∼ 1015 G, which is stronger than that of the radio pulsars.

Thus they are called Magnetars.
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Figure 1.8: Period P versus period derivative Ṗ for radio pulsars (crosses), Anomalous
X-ray Pulsars (red squares), and Soft Gamma-ray Repeaters (blue diamonds). Contours
show the magnetic field strength given by equation (1.2.4) (Woods & Thompson 2006).

The corresponding magnetic energy stored inside the magnetar is

Emag =
4πR3

s

3

B2

8π
∼ 2 × 1047

(
Rs

10 km

)3 (
B

1015 G

)2

erg. (1.2.5)

Although the rotation energy Erot given by equation (1.2.2) is less than the observed

energy of the giant flare, the magnetic energy is comparable or larger if the magnetic

field strength inside the magnetar is larger than that on the surface of the magnetar.

The magnetic field strength inside the magnetar is in principle as strong as 3 × 1017 G

(Thompson & Duncan 1993). Since the rotational energy corresponding to the rotation

period ∼ 5−12 sec can not explain the observed energy of the giant flares, it is considered

that the dissipation of the magnetic energy is responsible for the flares.

Another evidence for the magnetar with the ultra-strong magnetic field is the observa-

tion of the proton-cyclotron resonance feature (Strohmayer & Ibrahim 2000; Ibrahim et al.

2002, 2003). Strohmayer & Ibrahim (2000) presented the evidence of 6.4 keV and ∼ 13

keV emission lines during a burst from the SGR 1900+14. The harmonic relationship

between these lines is suggestive of cyclotron emission. Ibrahim et al. (2003) reported the

evidence of the cyclotron resonance feature from the precursor of the SGR outburst (see

Fig. 1.9). The features consist of the 5.0 keV absorption line with its second and third
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Figure 1.9: The spectrum of the burst from SGR 1806-20 on 50405.3704 (MJD). The
line absorption feature of the proton-cyclotron resonance is shown around 5 keV (Ibrahim
et al. 2003).

harmonics (11.2 and 17.5 keV). If the resonant lines correspond to the proton cyclotron

lines, the implied surface field strength is ∼ 1015 G.

1.2.2 The Magnetar Model of the SGR Outbursts

To explain the SGR activity, a variety of models were proposed such as the accretion

onto the magnetized neutron star (Livio & Taam 1987; Katz et al. 1994) and accretion

onto a quark star (Alcock et al. 1986). These models were excluded by observations

for optical/IR counterparts. The counterparts have been identified for five magnetars

(including AXPs). Since all the counterparts are very faint (the ratio of the X-ray to IR

fluxes is larger than a few thousands), the presence of the normal stars is excluded (see

Mereghetti 2008, for review). van Paradijs et al. (1995) and Ghosh et al. (1997) proposed

the model that the fossil disk, which is formed at the core collapse of the massive star,

accretes to the standard neutron star with magnetic field strength of ∼ 1013 G.

Duncan & Thompson (1992) and Thompson & Duncan (1993) proposed another model

of the SGR flares which is similar to that for the solar flares. When the massive star

collapses, the entropy decreases with radius since the outgoing shocks weaken. Such a

entropy gradient in radial direction results in convectively unstable state (Bethe et al.

1987; Mayle & Wilson 1988). Since the relativistic electrons can transport the charge
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Figure 1.10: Left: Schematic picture of the stable configuration of the magnetic field.
Solid curves show the poloidal magnetic fields, while the shaded area shows the toroidal
magnetic fields. Right: Magnetic field configuration inside the magnetar. A transparent
sphere shows the surface of the star (Braithwaite & Spruit 2006).

current, the magnetic Reynolds number is large (∼ 1017) enough to attain the ideal MHD

condition. The convective motion and the low resistivity suggest that the magnetic fields

are twisted and amplified by the dynamo mechanism. Also the differential rotation inside

the magnetar can twist and amplify the magnetic fields. The amplified magnetic field

strength is up to 3 × 1017 G (Thompson & Duncan 1993).

Such a strong magnetic field thrusts the Lorentz force on the crust of the magnetar

(Thompson et al. 2002). The Lorentz force is balanced with the rigidity of the crust.

When the critical twist is accumulated, the magnetic twist is injected into the magnetar

magnetosphere by cracking the crust (‘crustquake’). The large scale twist injection of the

magnetic flux into the magnetosphere increases the torque and it results in the increase

in the spin-down rate. Braithwaite & Nordlund (2006) studied the evolution of the mag-

netic fields in stellar interior after the star is formed. Inside the star, a tori of the twisted

magnetic fields is created. The field configuration outside the star is approximately dipole

(see Fig. 1.10). Interestingly these properties are independent of the initial field configu-

rations. Braithwaite & Spruit (2006) calculated the Maxwell stress exerted on the crust.

They found that the large stresses are built up in the crust, which will lead to crustquake.

The resulting crustquake will eject hot plasma into the magnetar magnetosphere (ac-

tive region). The Alfvén waves propagating along the field lines heat the plasma. Also the



13 1.2. THE ORIGIN OF THE SGRS OUTBURSTS.

Figure 1.11: Schematic picture of the forma-
tion of a trapped fireball on the surface of
the magnetar (Thompson & Duncan 2001).

Figure 1.12: Evolution of the expanding
magnetic loops (Lyutikov 2006). Solid
curves show the magnetic field lines. A
current sheet is formed inside the magnetic
loops.

induced electric field by the twist motion can accelerate particles. Such accelerated parti-

cles emit high energy photons. The interaction between the high energy photons and the

magnetic fields leads to the pair cascade. The generated leptons are trapped by the strong

magnetic fields. The active region on the magnetar surface quickly becomes optically thick

(namely, “trapped fireball”, see Fig. 1.11) (Thompson & Duncan 1995). Beloborodov &

Thompson (2007) performed 1-dimensional electrostatic particle simulations by including

the effect of the pair creation and the external gravity. The leptons are accelerated by

the induced electric field, resulting in the avalanches of the pair creation. The hot plasma

in magnetosphere persists in dynamic equilibrium. Since the plasma density increases

through the pair creation process, the density level exceeds the Goldreich-Julian density

(see Goldreich & Julian 1969, for the definition of the Goldreich-Julian density). Plasma

can shield the electric field E = −v × B/c induced by the crustal motions. Since the

magnetic field and plasma are well coupled each other, the magnetic fields in the magnetar

magnetosphere is twisted by the crustal motion.

The twisted magnetic fields in the magnetar magnetosphere will expand by the en-

hanced magnetic pressure (see Fig. 1.12). Such expanding magnetic loops driven by the

twist injection at the footpoints of them were originally proposed as the model of the

solar flares (Barnes & Sturrock 1972; Forbes & Priest 1982; Forbes & Priest 1983; Forbes

& Priest 1984; Mikic et al. 1988). Mikic et al. (1988) carried out 3-dimensional non-

relativistic magnetohydrodynamical (MHD) simulations of the expanding magnetic loops

as a model of solar flares. The left panel of Fig. 1.13 shows the initial condition of their
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Figure 1.13: Left: Schematic picture of the twist motion at the footpoints of magnetic
loops. Right: Result of the non-relativistic MHD simulation of the expanding magnetic
loops. A magnetic reconnection takes place inside the magnetic loops (Mikic et al. 1988).

simulations. The centre and right panels show the magnetic field lines obtained by MHD

simulations. By the twist injection at the footpoints of the magnetic loops, the magnetic

field lines are twisted because the magnetic fields are frozen in. The toroidal (Z compo-

nent of the) magnetic fields are created inside the magnetic loops. The magnetic loops

then expand in the vertical (X) direction. A current sheet is created inside the elongated

magnetic loops. The magnetic reconnection taking place in the current sheet can liberate

the magnetic energy stored inside the magnetic loops (see § 1.3 for the magnetic recon-

nection). In these processes, the twist injection increases the magnetic energy contained

inside the magnetic loops (free energy). The accumulated energy is converted into the ki-

netic and thermal energies by the magnetic reconnection inside the current sheet. Similar

models are proposed for flares observed in the protostars (Hayashi et al. 1996), jets from

the X-ray binaries (Kato et al. 2004), and jets from the Active Galactic Nuclei (AGNs)

(Meier et al. 2001).

In the magnetar and neutron star magnetosphere, the magnetic energy is dominant

to other energies such as the plasma rest mass energy and the thermal energy. Thus it is

plausible to ignore the plasma inertia and the pressure. This approximation is called the

force-free approximation (Uchida 1997a; Uchida 1997b, see Appendix A.1).
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Figure 1.14: Resuls of the relativistic force-free simulations of the expanding magnetic
loops. Curves show the magnetic field lines and color shows the radial velocity (Asano
2007).
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Figure 1.15: Plasma drift velocity of the expanding magnetic loops on the equatorial
plane. Solid curve shows the distribution at t = 46τc, while dotted and dot-dashed ones
are at t = 56τc, 66τc, respectively. Here τc is the light crossing time τc ≡ Rs/c and Rs is the
stellar radius. The velocity profile indicates that the magnetic loops expand self-similarly
(Asano 2007).
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Figure 1.16: Evolution of the pulse profile of SGR 1900+14 over 3.8 years. All the panels
show the pulse profile per 2 cycles and vertical axis shows the photon count rates with
arbitrary unit. The giant bursts occurred on August 27, 1998 (Woods et al. 2001).

The force-free approximation is applied to study the dynamics in the neutron star

magnetosphere (Komissarov 2002; Asano et al. 2005; Spitkovsky 2006). Spitkovsky (2005)

applied 2-dimensional relativistic force-free code to study the evolution of the magnetic

loops by imposing the twist motion at the footpoint of them. When the critical twist

is accumulated, the magnetic loops expand relativistically. Asano (2007) carried out

2-dimensional relativistic force-free simulations of expanding magnetic loops. Fig. 1.14

shows the time evolution of the expanding magnetic loops. Color contours show the

toroidal (azimuthal) magnetic field and curves show the magnetic field lines. Fig. 1.15

shows the Lorentz factor defined by the drift velocity vd = c(E×B)/B2 at the equatorial

plane. They showed that the maximum Lorentz factor exceeds 10. These results indicate

that the magnetic loops expand self-similarly.

Inside the expanding magnetic loops, a thin current sheet is formed, which is similar

to that found in the previous study of the solar flares. Lyutikov (2006) proposed that

the magnetic reconnection taking place inside the current sheet is responsible for the
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magnetar flares. When the magnetic reconnection takes place, topology of the magnetic

field lines is drastically changes and liberates the magnetic energy.

Woods et al. (2001) studied the evolution of the pulse profile of SGR 1900+14 before

and after the giant flare occurred on August 27, 1998. Fig. 1.16 shows the pulse profile

per 2 cycles of SGR 1900+14. The vertical axis shows the photon count rates in arbitrary

unit. At the time of the giant flare on August 27, 1998, the pulse profile of the persis-

tent emission changed dramatically from a complex, multi-peak morphology to a simple

sinusoidal morphology. The complex profile of the pulse profile can be explained by the

formation of the trapped fireball. The simple sinusoidal profile of the light curves radiated

by the dipole fields is modified by the formation of the fireball. The reconfiguration of

the magnetic field topology (magnetic reconnection) inside the fireball can be responsible

for the simplification of the pulse profile by evaporating the fireball.

1.3 Magnetic Reconnection

A model of the magnetic reconnection was originally proposed by Sweet (1958) and Parker

(1957) (called Sweet-Parker model) to explain the solar flares. Petschek (1964) proposed a

model of the magnetic reconnection including the slow shocks attached to the dissipation

region (Petschek 1964). The latter model can liberate the magnetic energy faster than the

Sweet-Parker model. Although these models are originally based on the non-relativistic

magnetohydrodynamics, it has also been studied as the energy conversion mechanism

in the high energy astrophysical objects, such as the rotation-powered pulsars (Coroniti

1990; Lyubarsky & Kirk 2001), the magnetohydrodynamic acceleration of the relativistic

jets (Meier et al. 2001), Gamma-ray bursts (Drenkhahn & Spruit 2002; Drenkhahn 2002)

and SGR flares (Woods et al. 2001; Lyutikov 2006).

In this section, the conventional Sweet-Parker type magnetic reconnection model and

the recent studies of the relativistic magnetic reconnection are reviewed.

1.3.1 Non-relativistic Sweet-Parker Magnetic Reconnection

Let us consider the steady state magnetic reconnection in Cartesian coordinate. The

neutral sheet is located on the Y = 0 plane. All the physical properties are independent

of Z (2-dimensional). The electric resistivity is applicable within the region of |X| < δ

and |Y | < L (see Fig. 1.17). The ideal MHD condition is applied outside the diffusion

region. The diffusion region is lying between the oppositely directed magnetic fields with
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the strength B0. The plasma density ρ and magnetic fields B are assumed to be uniform

in the inflow and outflow regions. We also assume that the plasma pressure p is negligible

compared to the magnetic pressure. The subscripts i, o, and d denotes inflow, outflow,

and dissipation regions, respectively.

From the Ampere’s law, the charge current inside the dissipation region is estimated

as

jz =
cBi

4πδ
. (1.3.1)

From the Gauss’s law, the magnetic field in the outflow region is given by

Bo =
δ

L
Bi. (1.3.2)

Next, let us estimate the outflow velocity from the magnetic reconnection. The equa-

tion of motion between the neutral point and the outflow region is approximately given

by

ρ(v · ∇)v ' 1

c
j × B. (1.3.3)

Here we ignore the pressure term. Substituting equations (1.3.1) and (1.3.2) into equation

(1.3.3), and replacing ∇ by 1/L, we obtain

vo '
Bi√
4πρo

. (1.3.4)

When we assume the incompressibility, i.e., ρi = ρo, we obtain

vo '
Bi√
4πρi

≡ vA, (1.3.5)

where vA is the Alfvén velocity of the inflow region. Thus the outflow is accelerated up

to the Alfvén velocity of the inflow.

The Z-component of the electric field in the inflow region and dissipation region is

written as

Ei =
1

c
viBi, (1.3.6)

and

Ed = ηj, (1.3.7)

respectively. Here η is the magnetic diffusivity. Since the electric field should be uniform

(∇× E = 0 from Faraday’s law), we obtain

vi =
c2η

4πδ
, (1.3.8)
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Figure 1.17: Schematic picture of the magnetic reconnection. Solid curves show the
magnetic field lines and grey area shows the diffusion region.

from equations (1.3.1), (1.3.6), and (1.3.7).

By assuming the incompressibility, the continuity equation can be written as

viL = voδ. (1.3.9)

Substituting equation (1.3.9) into equation (1.3.8), we obtain

vi = vAR
−1/2
M , (1.3.10)

where RM is the magnetic Reynolds number defined as

RM ≡ 4πvAL

ηc2
. (1.3.11)

Since the magnetic Reynolds number is large (∼ 104−105), the inflow velocity (reconnec-

tion rate) is much smaller than the Alfvén velocity. Thus the Sweet-Parker type magnetic

reconnection is considered as the ‘slow’ process.

1.3.2 Relativistic Sweet-Parker Magnetic Reconnection

In the previous subsection, we showed that the outflow is accelerated up to the Alfvén

velocity of the inflow. When the magnetic field energy is much larger than that of rest

mass in the inflow region, the outflow is expected to be ultra-relativistic (see Appendix

A.3.2, for the definition of the Alfvén velocity in the relativistic MHD). Blackman &

Field (1994) and Lyutikov & Uzdensky (2003) studied the Sweet-Parker type relativistic

magnetic reconnection for the relativistic plasma. They concluded that the outflow speed
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Figure 1.18: Time history of the reconnected magnetic flux from full particle, hybrid, hall
MHD, and MHD simulations (Birn et al. 2001).

becomes ultra-relativistic. They also concluded that the reconnection rate is enhanced

due to the Lorentz contraction. In their treatment, the pressure term is ignored as the

conventional manner. Lyubarsky (2005) pointed out the importance of increase in inertia

due to the larger thermal energy. The larger thermal energy contributes to the plasma

inertia (see Appendix A.1). The pressure balance across the current sheet demands the

following equation

pd =
B2

i

8π
, (1.3.12)

where pd is the gas pressure inside the diffusion region. For the larger magnetic fields

(B2
i /(8π) >> ρc2, hereafter we call ‘relativistic’), the thermal energy density also exceeds

that of rest mass. The larger thermal energy contributes to the plasma inertia. He

concluded that the outflow velocity is only mildly relativistic (Lorentz factor γ ∼ 1) and

the reconnection rate is not enhanced (vi/vo ' δ/L). The possibility of the faster outflow

from the relativistic magnetic reconnection is under discussion.

1.3.3 Numerical Approaches to the Magnetic Reconnection

A number of numerical simulations on the non-relativistic magnetic reconnection have

been performed in MHD (Ugai & Tsuda 1977; Sato & Hayashi 1979; Biskamp 1986;

Birn & Hesse 2001 ). Also a number of Particle-In-Cell (PIC) simulations have been

performed, which can appropriately treat the effect of the finite Larmor radius and non-

thermal particles (Horiuchi & Sato 1997; Hesse et al. 1999; Drake et al. 2003; Hoshino

et al. 2001). In the non-relativistic simulations, the outflow is accelerated up to the



21 1.3. MAGNETIC RECONNECTION

Alfvén velocity, but the inflow speed (reconnection rate) depends on models. Birn et al.

(2001) showed that inflow velocity is smaller for MHD simulations than for the Hall MHD,

Hybrid, and PIC simulations. They concluded that the Hall term (which originates from

the difference in the inertia between the electrons and ions) is important to explain the

larger reconnection rate (smaller RM). Horiuchi & Sato (1997) and Hesse et al. (1999)

performed PIC simulations and showed that the reconnection rate is independent of the

mass ratio between the electrons and ions. Hesse et al. (1999) reported that the off-

diagonal term of the pressure tensor mainly contributes to a larger reconnection rate.

In the relativistic regime, many authors have performed PIC simulations in 2D (Zen-

itani & Hoshino 2001; Jaroschek et al. 2004; Zenitani & Hoshino 2007; Karlický 2008;

Lyubarsky & Liverts 2008) and in 3-D (Zenitani & Hoshino 2005; Zenitani & Hoshino

2008). Zenitani & Hoshino (2001) showed that the reconnection rate cEz/(B0Vo), where

Ez and B0 are the electric fields induced by the magnetic reconnection and the magnetic

field strength of the inflow, respectively, is about 0.3, while Jaroschek et al. (2004) showed

that it is about 1.5 since additional electric fields are generated by the multiple current

sheet interaction. The shape of the reconnection region indicates that it is Sweet-Parker

type (Zenitani & Hoshino 2007, see Fig. 1.19). They showed that the outflow velocity

does not become ultra-relativistic, as predicted by Lyubarsky (2005). But the reason of

the slower outflow (compared to the Alfvén velocity) is not understood.

Watanabe & Yokoyama (2006) performed 2-dimensional relativistic resistive MHD

simulations. Color contours in Fig. 1.20 show the density, while the curves and the arrows

show the magnetic field lines and the velocity field, respectively. Since an anomalous

resistivity is implemented in their model, the structure of the magnetic reconnection is

similar to the Petschek type. Four slow shocks stem from the diffusion region. The

magnetic energy is converted to the plasma energy not only in the diffusion region but

also at the shocks. Such structures are observed in non-relativistic MHD simulations

(Scholer 1989; Yan et al. 1992; Yokoyama & Shibata 1994). The shock structure and the

outflow velocity is consistent with the analytical model for the relativistic reconnection

(Lyubarsky 2005).

Finally, we would like to discuss the energetic particle generation in the magnetic

reconnection. Around the X−point, magnetic energy is converted into that of the electric

fields. The electric field can accelerate particles. Such non-thermal particles have been

observed in the earth magnetosphere (see, e.g., Christon et al. 1988). Larrabee et al.

(2003) showed that the leptons are accelerated by the induced electric field. In their
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Figure 1.19: Relativistic magnetic reconnection by 2-D PIC simulation (Zenitani &
Hoshino 2007). Color contours show the density, while the curves do the magnetic field
lines.

Figure 1.20: Relativistic magnetic reconnection by 2-D Relativistic Resistive MHD simu-
lation (Watanabe & Yokoyama 2006). Color contours show the density, while the curves
and arrows do the magnetic field lines and velocity fields, respectively.
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Figure 1.21: Schematic picture of the expanding magnetic loops. A current sheet is
created inside the magnetic loops.

model, the particle energy spectra is approximately written as dN/dγ ∝ exp(−γ/γ0)/γ,

where γ0 is the cutoff energy. Lyubarsky & Liverts (2008) performed 2-dimensional PIC

simulations and confirmed that the particle energy spectra obeys the former function.

Zenitani & Hoshino (2001) performed 2-dimensional PIC simulations and showed that

the particle distribution function around the diffusion region can be fitted by power-law

function with index of −1. The radiation from the accelerated particles can be responsible

for the observed nonthermal spectra.

1.4 Purpose of This Paper

In this thesis, first, we derive self-similar solutions of relativistically expanding magnetic

loops for the purpose of studying the dynamics of the expanding magnetic loops (chapter 2,

region I in Fig. 1.21). Azimuthal magnetic fields are taken into account. We neglect stellar

rotation and assume axisymmetry and a purely radial flow. The self-similar parameter

depends on the radial distance r from the central star and the time t. The physical

properties of the magnetic loops, such as the internal structure and the energetics are

discussed.

In Chapter 3, we concentrate on the current sheet inside the magnetic loops (region

II in Fig. 1.21) and study the relativistic magnetic reconnection by extending the Sweet-
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Parker model. The treatment is based on the relativistic MHD. The magnetic fields

are assumed to reconnect steadily in a small thin rectangular box named dissipation

region. Applying the conservation laws of mass and energy to the dissipation region,

we obtain the relation between the inflow and the outflow. In our model, we include

the enthalpy decrease due to the expansion inside the dissipation region as well as the

pressure gradient force. Then we derive the condition for the relativistic outflow from the

magnetic reconnection.

Because the size of the dissipation region and the inflow velocity cannot be determined

in MHD analysis, we perform 2-dimensional PIC simulations (chapter 4) to verify the

analytic model discussed in Chapter 3. We assume collisionless and pair plasma. We

show that the outflow velocity is smaller than the Alvén velocity of the inflow for the

larger magnetic field energy, while the plasma pressure increases in proportion to the

magnetic field energy.

Chapter 5 is devoted for summary and discussion.



Chapter 2

Relativistic Expansion of Magnetic
Loops at the Self-similar Stage

Assuming relativistic force-free dynamics, Lyutikov & Blandford (2003) obtained self-

similar solutions of the spherically expanding magnetic shell. Prendergast (2005) found

self-similar solutions of the relativistic force-free field. In these studies of force-free dy-

namics, gas pressure and inertial terms are neglected. In the framework of the relativistic

magnetohydrodynamics (MHD), Lyutikov (2002) found self-similar solutions of the spher-

ically expanding magnetic shells. Low (1982) obtained non-relativistic self-similar MHD

solutions of the expanding magnetic loops in solar flares or supernovae explosion by as-

suming axisymmetry. Subsequently, Low (1984) extended his model to the case including

toroidal magnetic fields and applied it to solar coronal mass ejections (CMEs). The latter

model was employed by Stone et al. (1992) as a test problem to check the validity and

accuracy of axisymmetric MHD codes. In magnetar flares, the magnetic loops may be

twisted by the shear motion at the footpoints of the loops. The shear motion generates

Alfvén waves propagating along the field lines. Such twisted magnetic loops expand by the

enhanced magnetic pressure by the toroidal magnetic fields. Thus we should include the

toroidal magnetic field to study the evolution of magnetic loops during magnetar flares.

Also the relativistic effects should be included. The characteristic wave speed in the mag-

netar magnetosphere approaches the light speed because of the strong magnetic fields.

Thus our aim is to obtain relativistic self-similar MHD solutions of expanding magnetic

loops taking into account the toroidal magnetic fields by extending the non-relativistic

solutions found by Low (1982).

This chapter is organized as follows; in § 2.1, we present the relativistic ideal MHD

equations and introduce a self-similar parameter which depends on both radial distance

25
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SELF-SIMILAR STAGE

from the centre of the star and time. In § 2.2, we obtain self-similar solutions. The

physical properties of these solutions are discussed in § 2.3. We summarize the results in

§ 2.4.

2.1 Self-similar MHD Equations

In the following, we take the light speed as unity. The complete set of relativistic ideal

MHD equations is
∂

∂t
(γρ) + ∇ · (γρv) = 0, (2.1.1)

ργ

[
∂

∂t
+ (v · ∇)

]
(ξγv) = −∇p + ρeE + j × B − GMργ

r2
er, (2.1.2)[

∂

∂t
+ (v · ∇)

](
ln

p

ρΓ

)
= 0, (2.1.3)

∇ · E = 4πρe, (2.1.4)

∇ · B = 0, (2.1.5)

∂B

∂t
+ ∇× E = 0, (2.1.6)

∂E

∂t
= ∇× B − 4πj, (2.1.7)

E = −v × B, (2.1.8)

where E,B, j, v, γ, ρe, ρ, p, Γ are the electric field, the magnetic field, the current density,

the velocity, the Lorentz factor, the charge density, the mass density, the pressure and the

specific heat ratio, respectively. The vector er is a unit vector in the radial direction. We

include the gravity by a point mass M as an external force. Here G is the gravitational

constant, and r is the distance from the centre of the star. The relativistic specific enthalpy

ξ is defined as

ξ =
ε + p

ρ
= 1 +

Γ

Γ − 1

p

ρ
, (2.1.9)

where ε is the energy density of matter including the photon energy coupled with the

plasma. In SGR outbursts, since the luminosity much exceeds the Eddington luminosity,

radiation energy density can exceed the thermal energy of the plasma. In the following

pressure p includes the contribution from the radiation pressure.

In this chapter, we consider relativistic self-similar expansions of magnetic loops which

started expansion at t = ts by loss of dynamical equilibrium and entered into a self-similar

stage at t = t0 > ts. We do not consider the evolution of the loops before t = t0.



27 2.1. SELF-SIMILAR MHD EQUATIONS

For simplicity, we ignore the stellar rotation and assume axisymmetry. We can express

the axisymmetric magnetic field in terms of two scalar functions Ã and B as

B =
1

r sin θ

(
1

r

∂Ã

∂θ
,−∂Ã

∂r
,B

)
, (2.1.10)

in the polar coordinates (r, θ, φ). The scalar function Ã(t, r, θ), which corresponds to the

vector potential, denotes the magnetic flux. The contours of Ã coincide with magnetic

field lines projected on to the r − θ plane.

We further assume that the fluid flow is purely radial;

v = v(t, r, θ) er. (2.1.11)

Equations (2.1.1), (2.1.2), (2.1.3), and (2.1.6) are then expressed as

∂(ργ)

∂t
+

1

r2

∂(r2ργv)

∂r
= 0, (2.1.12)

ργ

[
∂

∂t
+ v

∂

∂r

]
(ξγv) = −∂p

∂r
− GMργ

r2

− 1

4πr2 sin2 θ

{
∂Ã

∂r

[(
L̂(r,θ)Ã

)
+

∂

∂t

(
v
∂Ã

∂r

)]
+ B

[
∂B

∂r
+

∂(vB)

∂t

]}
, (2.1.13)

4πr2 sin2 θ
∂p

∂θ
+ (1 − v2)B

∂B

∂θ
+

∂Ã

∂θ

[(
L̂(r,θ)Ã

)
+

∂

∂t

(
v
∂Ã

∂r

)]
− vB2∂v

∂θ
= 0, (2.1.14)

(1 − v2)
∂Ã

∂r

∂B

∂θ
− ∂Ã

∂θ

[
∂B

∂r
+

∂(vB)

∂t

]
− vB

∂Ã

∂r

∂v

∂θ
= 0, (2.1.15)[

∂

∂t
+ v

∂

∂r

](
ln

p

ρΓ

)
= 0, (2.1.16)

∂Ã

∂t
+ v

∂Ã

∂r
= 0, (2.1.17)

∂B

∂t
+

∂(vB)

∂r
= 0, (2.1.18)

where we used the MHD condition given by (2.1.8) and introduced the operator

L̂(r,θ) ≡
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (2.1.19)

Since our aim is to obtain self-similar solutions of these relativistic MHD equations, we

assume that the time evolution is governed by the self-similar variable:

η =
r

Z(t)
, (2.1.20)
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where Z(t) is an arbitrary function of time. We further assume that the flux function Ã

depends on time t and the radial distance r through the self-similar variable η, as

Ã(t, r, θ) = Ã(η, θ). (2.1.21)

When equation (2.1.21) is satisfied, the radial velocity v has a form

v = ηŻ, (2.1.22)

from equation (2.1.17). Here dot denotes the time derivative. Equation (2.1.22) implies

that the radial velocity v does not depend on the polar angle θ. It then follows from

equations (2.1.12) and (2.1.18) that

ρ(t, r, θ)γ(t, r) = Z−3(t)D(η, θ), (2.1.23)

B(t, r, θ) = Z−1(t)Q(η, θ), (2.1.24)

where Q and D are arbitrary functions of η and θ. These relations indicate that the

magnetic flux and the total mass are conserved. Next we take the pressure p as p(t, r, θ) =

Z lP (η, θ). Substituting this equation into equations (2.1.14) and (2.1.16), we obtain

4πη2Z l+4 sin2 θ
∂P

∂θ
+ (1 − η2Ż2)Q

∂Q

∂θ

+
∂Ã

∂θ

[
L̂(η,θ)Ã +

(
ηZZ̈ − 2ηŻ2

) ∂Ã

∂η
− η2Ż2∂2Ã

∂η2

]
= 0,

(2.1.25)

Γη2ZZ̈

1 − η2Ż2
+ (3Γ + l) = 0, (2.1.26)

where we introduced an operator L̂(η,θ):

L̂(η,θ) ≡
∂2

∂η2
+

sin θ

η2

∂

∂θ

(
1

sin θ

∂

∂θ

)
=

1

Z2
L̂(r,θ). (2.1.27)

To satisfy these equations, p, Z and Γ should have forms

p(t, r, θ) = Z−4P (η, θ), (2.1.28)

Z(t) = t, (2.1.29)

and

Γ =
4

3
. (2.1.30)
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This adiabatic index corresponds to the radiation pressure dominant plasma. Thus our

model can describe the evolution of a fireball confined by magnetic fields.

Equations (2.1.23) and (2.1.28) indicate that the magnetic loops expand adiabatically.

By using equations (2.1.22), (2.1.23), (2.1.24), (2.1.28), (2.1.29) and (2.1.30), equations

(2.1.13), (2.1.15) and (2.1.25) are expressed as

D(η, θ) =
η2

GM

{
4ηP

1 − η2
− ∂P

∂η

− 1

4πη2 sin2 θ

[
∂Ã

∂η

(
L̂(η,θ)Ã − ∂

∂η

(
η2∂Ã

∂η

))
+ Q

∂

∂η

(
Q(1 − η2)

)]}
, (2.1.31)

(1 − η2)
∂Ã

∂η

∂Q

∂θ
− ∂Ã

∂θ

∂

∂η

[
(1 − η2)Q

]
= 0, (2.1.32)

4πη2 sin2 θ
∂P

∂θ
+

∂Ã

∂θ

[
L̂(η,θ)Ã − ∂

∂η

(
η2∂Ã

∂η

)]
+ (1 − η2)Q

∂Q

∂θ
= 0. (2.1.33)

From equation (2.1.32), a formal solution of Q is obtained as

Q(η, θ) =
G(Ã)

1 − η2
, (2.1.34)

where G is an arbitrary function.

Self-similar solutions can be constructed as follows. First we prescribe an arbitrary

function Ã(η, θ) (or Q(η, θ)). Then, equation (2.1.32) determines the function Q(η, θ)

(or Ã(η, θ)). Functions Ã and Q determine the pressure P (η, θ) according to equation

(2.1.33). Finally, the density function D(η, θ) is obtained by equation (2.1.31).

Note that from the equation (2.1.22) and (2.1.29), the radial velocity has a simple

form as

v =
r

t
. (2.1.35)

Since the time derivative of the velocity becomes zero, i.e., Dv/Dt = 0, equations (2.1.31)-

(2.1.33) describe the freely expanding solution. This means that there is a reference frame

that all forces balance. By substituting equations (2.1.23), (2.1.24), (2.1.28), (2.1.29), and

(2.1.35) into the equations of motion (2.1.2), we obtain

Γ

Γ − 1

γ2v2p

r
er −∇p + ρeE + j × B − GMργ

r2
er = 0. (2.1.36)

The first term on the left hand side comes from the inertia. For convenience, we call

this term as a thermal inertial term throughout this chapter. When we neglect the terms

of order (v/c)2, equation (2.1.36) reduces to the equations of the force balance in non-

relativistic MHD.
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b a h

region I region II region III

Figure 2.1: The flux function Ã as a function of η for the dipolar solution (solid curve),
the shell solution (dashed curve), and the flux rope solution (dot-dashed curve). The
parameters a and b denote the outer and inner boundaries of the shell, respectively.

2.2 Self-similar solutions

In the previous section, we derived relativistic self-similar MHD equations, (2.1.31),

(2.1.32) and (2.1.33). In this section, we obtain solutions of these equations by imposing

appropriate boundary conditions. As mentioned in the previous section, the toroidal mag-

netic field, the pressure, and the gas density are calculated by assigning the flux function

Ã(η, θ). In the following, we introduce three kinds of flux functions and obtain explicit

forms of other variables.

2.2.1 Construction of Solutions

We assume that the expanding magnetic loops have a spherical outer boundary at r =

R(t).

A simple solution of the expanding magnetic loops is that the poloidal magnetic field

is dipolar near the surface of the star (Low 1982). The magnetic field should be tangential

to the spherical surface r = R(t) at all time. Such a solution can be constructed by

Ã(η, θ) = A0
a2 − η2√

1 − η2
sin2 θ, (2.2.1)

where A0 and a are constants. The radius R(t) where Ã = 0 is given by

R(t) = at. (2.2.2)

We hereafter call the solution constructed from equation (2.2.1) as dipolar solution.
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Figure 2.2: Contour plots of the magnetic flux Ã which constructs the dipolar, shell, and
flux rope solutions from left to right, respectively. The parameters are taken as a = 0.8,
b/a = 0.7, and k = π/[4(a − b)].

Solid curve in Fig. 2.1 shows the flux function Ã as a function of η for the dipolar

solution. Contour plots of Ã for dipolar solution is shown in the left panel of Fig. 2.2.

When the flux function is given by equation (2.2.1), the magnetic flux crossing the

annulus at the equatorial plane θ = π/2 decreases with radius (see Fig. 2.1). In actual

MHD explosion, the magnetic flux can be swept up into a thin shell just behind the loop

top. The shell boundaries are assumed to be at r = bt and r = at (region II, see Fig.

2.1). Such a self-similar field can be constructed by

Ã(η, θ) =

{
A0a

2 sin2 θ, (region I : η <= b),
A0a

2Λ(η) sin2 θ, (region II : b < η <= a),
(2.2.3)

where

Λ(η) = 1 − sin4 T (η)

sin4 T (a)
, (2.2.4)

T (η) = k(η − b), (2.2.5)

and a, b and k are constants (Low 1982). The flux functions in region I (η <= b) and region

II (b < η <= a) are connected smoothly at η = b. The loop boundary locates at r = at,

where Ã = 0.
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The flux function for this solution is shown by a dashed curve in Fig. 2.1. It can be

easily shown that the magnetic field lines projected on to the r − θ plane are all radial

in region I. We call the solution constructed from equation (2.2.3) as shell solution. The

middle panel of Fig. 2.2 shows the contours of Ã for the shell solution.

Another solution is that we call flux rope solution. As the magnetic loops expand,

a current sheet is formed inside the magnetic loops. It is suggested that the magnetic

reconnection taking place in the current sheet is responsible for the SGR flares (Woods

et al. 2001; Lyutikov 2006). When the magnetic reconnection takes place, flux ropes

(namely plasmoids) are formed inside magnetic loops. The flux function should then have

a local maximum inside the flux rope. Such a solution can be constructed by

Ã(η, θ) =


A0a

2√
1 − η2

sin2 θ, (region I : η <= b),

A0a
2√

1 − η2
Λ(η) sin2 θ, (region II : b < η <= a),

(2.2.6)

where A0, a are constants and Λ(η) is given by equation (2.2.4). This function is shown

by a dot-dashed curve in Fig. 2.1. It has a local maximum in the domain b < η < a

(see Fig. 2.1). The contours of Ã for the flux rope solution is shown in the right panel of

Fig. 2.2. Flux ropes appear behind the shell.

2.2.2 Dipolar Solutions

Dipolar solutions are constructed by the flux function specified by equation (2.2.1). The

azimuthal magnetic fields can be obtained by substituting equation (2.2.1) into equation

(2.1.32) as

Q(η, θ) =
∑

n

Q0,n
(a2 − η2)

n
2

(1 − η2)1+ n
4

sinn θ, (2.2.7)

where Q0,n are constants. Note that the solutions (2.2.1) and (2.2.7) satisfy the formal so-

lution given by equation (2.1.34). Substituting equations (2.2.1) and (2.2.7) into equation

(2.1.33), we obtain the pressure function P :

P (η, θ) = P0(η) + PA(η, θ) + PQ(η, θ), (2.2.8)

where P0(η) is an arbitrary function arisen from the integration and PA and PQ are given

by

PA(η, θ) =
A2

0

4πη4

a2 − η2

(1 − η2)2
(2a2 − 3a2η2 − η4 + 2η6) sin2 θ, (2.2.9)
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Figure 2.3: Contour plots of the magnetic flux Ã (left), the poloidal part of the pressure
PA (centre), and that of the gas density DA(right) for the dipolar solution in η/a−θ plane
when a = 0.8.

PQ(η, θ) =


−

∑
m+n6=2

nQ0,mQ0,n

4π(m + n − 2)

(a2 − η2)
m+n

2

η2(1 − η2)1+ m+n
4

sinm+n−2 θ, for m + n 6= 2,

−
∑

m+n=2

nQ0,mQ0,n

4π

a2 − η2

η2(1 − η2)
3
2

log(sin θ), for m + n = 2.

(2.2.10)

Substituting equations (2.2.1), (2.2.7), (2.2.8), (2.2.9), and (2.2.10) into (2.1.31), the

density function D can be determined as

D(η, θ) = D0(η) + DA(η, θ) + DQ(η, θ), (2.2.11)

where

D0(η) =
η2

GM

(
4ηP0

1 − η2
− dP0

dη

)
, (2.2.12)

DA(η, θ) =
A2

0

4πGMη3

(a2 − η2)

(1 − η2)3

[
a2(8 − 12η2 + 3η4) − η6(5 − 6η2)

]
sin2 θ, (2.2.13)
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Figure 2.4: Contour plots of the toroidal magnetic field (left), the toroidal part of the
pressure PQ (centre), and that of the density DQ(right) for the dipolar solution in η/a− θ
plane when a = 0.8 and m = n = 4.

DQ(η, θ) =



−
∑

m+n6=2

nQ0,mQ0,n

4πGM(m + n − 2)

(a2 − η2)
m+n−2

2 (2a2 − a2η2 − η4)

η(1 − η2)2+m+n
4

sin(m+n−2) θ,

for m + n 6= 2,

−
∑

m+n=2

nQ0,mQ0,n

8πGM

−η2(2 − a2 − η2) + 2(2a2 − a2η2 − η4) log(sin θ)

η(1 − η2)
5
2

,

for m + n = 2.

(2.2.14)

The parameters m and n correspond to the Fourier modes in the θ direction. These

parameters should be determined by the boundary condition on the surface of the central

star where magnetic twist is injected.

Equation (2.2.8) and (2.2.11) indicate that the solution consists of three parts, P0,

PA and PQ (or D0, DA and DQ). The arbitrary function P0(η) describes an isotropic

pressure in the region r < R(t). The isotropic density profile D0(η) is related to P0

through equation (2.2.12). This equation is similar to that in non-relativistic model (Low

1982). In the non-relativistic model, gravity is supported by the gradient of P0(η). In the

relativistic case, relativistic correction of the plasma inertia cannot be ignored. This effect

is included in the first term in the right hand side of equation (2.2.12). Other functions PA
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and PQ (or DA and DQ) come from the interaction with the electromagnetic force. Note

that the plasma pressure PQ, which balances with the electromagnetic force produced by

the toroidal magnetic field, is always negative. This suggests that the pressure is smaller

for larger toroidal magnetic fields.

Fig. 2.3 shows the contour plots of the magnetic flux Ã (left), the poloidal part of the

pressure PA (centre), and that of the gas density DA (right), while Fig. 2.4 shows the

contour plots of the toroidal magnetic field Bφ (left), the toroidal part of the pressure PQ

(centre), and that of the gas density DQ (right) in the η/a − θ plane for m = n = 4 and

a = 0.8.

The magnetic field is explicitly expressed as

Br =
2A0

r2

a2 − (r/t)2√
1 − (r/t)2

cos θ, (2.2.15)

Bθ =
A0

t2
2 − a2 − (r/t)2

[1 − (r/t)2]
3
2

sin θ, (2.2.16)

Bφ =
∑

n

Q0,n

rt

[a2 − (r/t)2]
n
2

[1 − (r/t)2]1+ n
4

sinn−1 θeφ, (2.2.17)

where er, eθ, and eφ are unit vectors in r, θ, and φ directions in the polar coordinate,

respectively. Note that Br and Bφ are zero at r = R(t) but Bθ is not zero and it depends

on time when a 6= 1. We will discuss the physical meaning of this result later in §2.2.3.

In later stage, the magnetic field becomes stationary,

lim
t→∞

B =
2A0a

2

r2
cos θer, (2.2.18)

and the magnetic field becomes radial. In the limit t À r, the pressure and the gas density

inside the magnetic loop are given by

lim
t→∞

p =
A2

0a
4

2πr4
sin2 θ +

1

r4

(
P0η

4
)∣∣

η=0
, (2.2.19)

lim
t→∞

ρ =
2A2

0a
4

πGMr3
sin2 θ +

1

r3

(
D0η

3
)∣∣

η=0
. (2.2.20)

Since the toroidal magnetic field tends to be zero in this limit, the pressure and density

do not depend on the amplitude of the toroidal magnetic fields.
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Figure 2.5: Contour plots of the magnetic flux Ã (left), the poloidal part of the pressure
PA (centre), and that of the gas density DA (right) for the shell solution in η/a− θ plane
when a = 0.8 and b = 0.75a.

2.2.3 Shell Solutions

Shell solutions are constructed from the flux function (2.2.3). By substituting equation

(2.2.3) into equation (2.1.32), the function Q can be obtained as

QI(η, θ) = QI
0

f(θ)

1 − η2
, (2.2.21)

QII(η, θ) =
∑

n

QII
0,n

1 − η2

[
sin4 T (a) − sin4 T (η)

]n
2 sinn θ, (2.2.22)

where f(θ) is an arbitrary function of θ, and QI
0 and QII

0,n are constants. The subscripts

I and II mean that the function is defined in region I and in region II, respectively.

The arbitrary function f(θ) can be determined by applying the boundary condition that

magnetic field should be connected smoothly at η = b,

QI(η = b, θ) = QII(η = b, θ). (2.2.23)

By using the boundary condition, the function f is given by

f(θ) =
∑

n

sinn θ. (2.2.24)
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Figure 2.6: Contour plots of the toroidal magnetic field Bφ (left), the toroidal part of
the pressure PQ (centre), and that of the gas density DQ (right) for the shell solution in
η/a − θ plane when a = 0.8, b = 0.75a, and n = m = 4.

and the function QI is obtained as

QI(η, θ) =
∑

n

QI
0,n

sinn θ

1 − η2
. (2.2.25)

The constants QI
0,n and QII

0,n should be related by

Q0,n ≡ QI
0,n = QII

0,n sin2n T (a). (2.2.26)

from the boundary condition (2.2.23). Substituting equations (2.2.3), (2.2.22), (2.2.25)

and (2.2.26) into equation (2.1.33), we obtain the pressure function P (η, θ). The density

function D(η, θ) is obtained from equation (2.1.31). The functions Q, P , and D obtained

in region I and region II are given in appendix B.1.

The pressure and the gas density consist of three parts, the isotropic part P0 and parts

representing the interaction with the electromagnetic force by the poloidal and toroidal

components of the magnetic field, PA and PQ, similarly to the dipolar solutions (see

equations (B.1.2) and (B.1.9), for the pressure and equations (B.1.5) and (B.1.13) for the

gas density).

Fig. 2.5 shows the contour plots of the magnetic flux Ã (left), the poloidal part of the

pressure PA (centre), and that of the gas density DA (right) in η/a−θ plane. Fig. 2.6 shows



38
CHAPTER 2. RELATIVISTIC EXPANSION OF MAGNETIC LOOPS AT THE

SELF-SIMILAR STAGE

0.75 0.80 0.85 0.90 0.95 1.00

0.0

0.2

0.4

0.6

0.8

1.0

1.2

DSr 
/30,

DS
r 

/10,

DS
r 

/450,

0.75 0.80 0.85 0.90 0.95 1.00

-6

-4

-2

0

2

4

6

DDA 
/10,

DD
A 

/40,

DD
A 

/3000,

D
D

A

Figure 2.7: Distributions of the Poynting flux ∆Sr ≡ πr4Sr/(A
2
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take Q0,n = 0.

contour plots of the toroidal magnetic field Bφ (left), the toroidal part of the pressure PQ

(centre), and that of the gas density DQ (right) in η/a − θ plane. The parameters are

taken to be a = 0.8, b = 0.75a, and m = n = 4 in both figures. A shell structure appears

behind the loop top.

The pressure PQ is always negative (see equations (B.1.4) and (B.1.11) and the middle

panel of Fig. 2.6) and its amplitudes is proportional to that of the toroidal magnetic fields,

Q0,n. This indicates that the pressure is smaller for a larger toroidal magnetic field.

The magnetic field is explicitly given by

BI
r =

2A0a
2

r2
cos θ, (2.2.27)

BI
φ =

∑
n

Q0,n
t

r(t2 − r2)
sinn−1 θ, (2.2.28)

BII
r =

2A0a
2

r2
Λ (r/t) cos θ, (2.2.29)

BII
θ =

4A0a
2

rt
k
sin3 T (r/t) cos T (r/t)

sin4 T (a)
sin θ, (2.2.30)

BII
φ =

∑
n

Q0,nΛ
n
2 (r/t)

t sinn−1 θ

r(t2 − r2)
. (2.2.31)

Similarly to the dipolar solution, the shell solutions have the parameter m which corre-

sponds to the Fourier modes in the polar angle θ. These modes and the corresponding

amplitude Q0,m of the toroidal magnetic fields should be determined by the boundary

condition at the surface of the central star where the magnetic twist is injected.
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In contrast to the dipolar solution, the magnetic field lines do not cross the equatorial

plane in region I (see the left panel in Fig. 2.5). Note that in the limit that t À r, the

magnetic fields and plasma distribution approach those of the dipolar solution, given by

(2.2.18), (2.2.19) and (2.2.20).

At the boundary r = R(t), the field components Br and Bφ are exactly zero, but Bθ

is not zero. Since the Poynting flux S = (E × B)/(4π) is not zero at r = R(t), the

energy flux will be transmitted to the region outside the boundary at r = R(t). When

cos T (a) = 0, since the magnetic field vanishes at r = R(t), the energy is not transferred

to r > R(t). This happens when the constant k is given by

k =
(2l + 1)

2

π

a − b
, (2.2.32)

where l is an integer number.

Fig. 2.7 shows the distributions of the Poynting flux ∆Sr = r4πSr/(A2
0a

4 sin2 θ) (left

panel) and ∆DA ≡ DAπGMη3(1−η2)/[2A2
0a

4 sin2 θ] (right panel) for a = 0.8, b/a = 0.75,

and Bφ = 0 for shell solutions. Solid curve denotes that for k = π/[4(a − b)], while

dashed and dot-dashed ones do for k = π/[2(a − b)] and k = 3π/[4(a − b)], respectively.

When k satisfies equation (2.2.32), Bθ(t, r = at, θ) = 0 and thus Sr(t, r = at, θ) = 0.

Electromagnetic energy is not transmitted ahead of the loop top. When k does not satisfy

equation (2.2.32), the Poynting flux Sr at r = at is not zero and the electromagnetic energy

is transmitted to r > at. The physical interpretation of the condition given in equation

(2.2.32) is as follows.

Let us consider the MHD waves propagating inside the magnetic loops. The MHD

waves consist of the forward wave Bfor and the reflected wave Bref (Bfor and Bref are the

magnetic fields in the poloidal plane). When the wave BIII
leak is transmitted to region III

(see Fig. 2.8), the electromagnetic energy can be converted to the kinetic and thermal

energies in region III. The magnetic field Bθ given in equation (2.2.30) can be expressed

by the superposition of the forward and reflected waves. When the density enhancement

appears ahead of the magnetic loop in region II, the forward waves can be partially

reflected by it. The condition for the perfect reflection should be determined by the

wavelength λ and the thickness of the density enhancement d ∼ (a − b)t. This situation

is analogous to the enhancement of the reflection rate by coating a glass with dielectric

medium. The reflection rate becomes maximum when the width of the dielectric medium

d satisfies d = (2l + 1)λ/4. When λ = 2π/k, this condition coincides with equation

(2.2.32). Note that the parameter k in equation (2.2.32) is not exactly the wave number
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Figure 2.8: Schematic picture of the
propagating waves. The forward
wave Bfor and the reflected waves
Bref propagate inside the loops.
Solid curves show the loop top at
r = R(t), while the thin curves show
the magnetic field lines. The super-
position of these waves determines
Bθ in region II. The leak wave Bleak

appears ahead of the loop top in re-
gion III.
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2) of the shell solution for k = π/[2(a − b)]
(left panel) and k = 3π/[4(a − b)] (right panel).

but it determines the profile of the magnetic fields (see equations (2.2.3), (2.2.4), and

(2.2.5) for the definition of k). When the condition (2.2.32) is satisfied, the MHD waves

propagating in the +r direction are totally reflected by the density enhancement produced

by the loop expansion. For the dipolar solution, the magnetic energy is transmitted to

r > R(t) because the density enhancement does not appear (see the right panels of Fig. 2.3

and Fig. 2.4).

When k > π/[2(a− b)], the magnetic shell recedes from η ∼ a to the region b < η < a,

and a flux rope appears around η = a ahead of the magnetic shell. Fig. 2.9 shows the

contour plots of the magnetic flux Ã of the shell solutions for k = π/[2(a− b)] (left panel)

and k = 3π/[4(a − b)] (right panel).

2.2.4 Flux Rope Solutions

Flux rope solutions which include flux ropes inside the expanding magnetic loops are

constructed by the flux function (2.2.6).

By substituting equation (2.2.6) into equation (2.1.32), the function Q can be written



41 2.2. SELF-SIMILAR SOLUTIONS

0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

0.0

1.0

-1.0

h/a

0.1

0.3

0.5

0.8

1.0

1.1

1.2

1.3

0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

0.0

1.0

-1.0

h/a

1

5
10

10

100

200

100

50

0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

0.0

1.0

-1.0

h/a

200

500

70

-10
-50

-200

70

200

5
0
0

Figure 2.10: Contour plots of the magnetic flux Ã (left), the poloidal part of the pressure
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plane when a = 0.8, b = 0.75a.

as

QI(η, θ) =
∑

n

Q0,n

(1 − η2)1+n
4

sinn θ, (2.2.33)

QII(η, θ) =
∑

n

Q0,n

(1 − η2)1+ n
4

Λ
n
2 (η) sinn θ, (2.2.34)

where Q0,n is a constant and subscripts I and II denote region I and region II, respec-

tively. The pressure and density functions (i.e., P and D) can be obtained by substituting

equations (2.2.6), (2.2.33), (2.2.34) into equations (2.1.31) and (2.1.33). The functions P

and D obtained in region I and region II are given in appendix B.2.

The pressure and the gas density consist of three parts, the isotropic part P0 and

parts representing the interaction with the electromagnetic force by the poloidal and

toroidal magnetic fields, PA and PQ (see equations (B.2.1) and (B.2.7) for the pressure

and equations (B.2.4) and (B.2.10) for the gas density).

Fig. 2.10 shows the contour plots of the magnetic flux Ã (left), the poloidal part

of the pressure PA (centre), and that of the gas density DA (right) in η/a − θ plane.

Fig. 2.11 shows contour plots of the toroidal magnetic field Bφ (left), the toroidal part of

the pressure PQ (centre), and that of the gas density DQ (right) in η/a − θ plane. The
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parameters are taken to be a = 0.8, b = 0.75a, and m = n = 4 in both figures. The flux

ropes exist behind the loop top (see the left panel of Fig. 2.10).

The magnetic fields in region I and II are explicitly given by

BI
r =

2A0a
2

r2

√
1 − (r/t)2

cos θ, (2.2.35)

BI
θ = − A0a

2

t2[1 − (r/t)2]
3
2

sin θ, (2.2.36)

BI
φ =

∑
n

Q0,n

rt[1 − (r/t)2]1+ n
4

(r/t) sinn−1 θ, (2.2.37)

BII
r =

2A0a
2

r2

Λ (r/t)√
1 − (r/t)2

cos θ, (2.2.38)

BII
θ =

A0a
2

t2
1[

1 − (r/t)2] 3
2{

4
tk

r

[
1 − (r/t)2] sin3(T (r/t)) cos(T (r/t))

sin4(T (a))
− Λ (r/t)

}
sin θ, (2.2.39)

BII
φ =

∑
n

Q0,n

rt

Λ
n
2 (r/t)[

1 − (r/t)2]1+ n
4

sinn−1 θ. (2.2.40)

Here the subscripts I and II denote the magnetic fields in region I and region II, re-

spectively. Similarly to the dipolar and shell solutions, the parameter m represents the

Fourier modes which specify where the magnetic twist is injected.

In the limit that t À r, the flux rope solution reduces to the dipolar solution given

by equation (2.2.18), (2.2.19) and (2.2.20). In this limit, the magnetic field becomes

stationary and radial.

Note that the field component Br and Bθ are exactly zero but Bθ is not zero at r = R(t)

unless the condition (2.2.32) is satisfied. The electromagnetic energy is transmitted to

r > R(t) unless the condition (2.2.32) is satisfied as discussed in the previous subsection.

When equation (2.2.32) is satisfied, the Poynting flux is totally reflected at r = R(t) and

the electromagnetic energy is not transmitted to r >= R(t).

2.3 Physical Properties

Here we discuss physical properties of the three solutions we derived in § 2.2. In this

section, we organize our discussion into four parts. First we consider the energetics.

Second we show the shell and flux rope structures derived in § 2.2.3 and § 2.2.4 inside
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Figure 2.11: Contour plots of the toroidal magnetic field Bφ (left), the toroidal part of
the pressure PQ (centre), and that of the gas density DQ (right) for the flux rope solution
in η/a − θ plane when a = 0.8, b = 0.75a, and n = m = 4 .

the magnetic loops. Third we study the relativistic effects, especially the role of the

displacement current. Finally, we apply our solutions to SGR flares.

2.3.1 Energetics

First let us consider the dipolar solution without the toroidal magnetic field (i.e., Q0,n = 0)

for simplicity. Total energy E contained inside the expanding magnetic loops is given as

E = K + Uin + Uth + UE + UM + W, (2.3.1)

where

K =

∫
V

dV ργ2, (2.3.2)

Uin =

∫
V

dV
Γ

Γ − 1
γ2v2p, (2.3.3)

Uth =

∫
V

dV
p

Γ − 1
, (2.3.4)

UE =

∫
V

dV
E2

8π
, (2.3.5)
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Figure 2.12: A schematic picture showing an expanding magnetic loop. Toroidal magnetic
field is created inside the magnetic loop due to the twist injection from the surface of the
magnetar. The magnetic pressure gradient force plus the pressure gradient force balances
with the magnetic tension force by the poloidal magnetic field.

UM =

∫
V

dV
B2

8π
, (2.3.6)

W = −
∫

V

dV
GMγρ

r
, (2.3.7)

are kinetic, thermal inertial, thermal, electric, magnetic, and gravitational potential ener-

gies, respectively. Since the solutions we derived describe the freely expanding magnetic

loops, i.e., Dv/Dt = 0, the total kinetic energy K given by

K =

∫
V

ργ2dV =

∫ a

0

dη

∫ 2π

0

dθ

∫ π

0

dφ
η2D(η, θ)√

1 − η2
sin θ, (2.3.8)

does not change with time. Here the total kinetic energy is integrated inside the spherical

surface of r = R(t). Other energies can be evaluated by carrying out the integration

directly. The non-kinetic part of the total energy E ′ ≡ Uin +Uth +UE +UM +W contained

inside r = R(t) is then given as

E ′ =
4A2

0a
3

3t
. (2.3.9)

Since the thermal, gravitational potential, and magnetic energies contain infinity due

to the divergence of p, ρ, and Br at r = 0 (see equations (2.2.9), (2.2.13), and (2.2.15),

respectively), we renormalized the infinite parts of Uth, UM, and W to zero (see Low 1982).
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The non-kinetic part of the total energy E ′ depends on the amplitude of the poloidal

magnetic field A0, but is independent of the isotropic component (i.e., P0 and D0). The

isotropic component does not contribute to the total energy because the thermal energy

of the isotropic plasma cancels with that of the gravitational potential energy.

The energy E ′ diverges at t = 0 because we assumed a point mass at the origin. In

magnetars, since the magnetar has a finite radius Rs, the self-similar expansion will take

place when r > r0 > Rs and t > t0. Let us denote the total energy and the non kinetic part

of the total energy inside the spherical surface of r0 ≡ R(t0) as E0 and E ′
0, respectively.

The expansion takes place when E0 > E ′
0. Since the total kinetic energy K = E0 − E ′

0

does not change with time and E ′(t) given in equation (2.3.9) decreases with time for the

dipolar solution, E(t) = E ′(t)+K < E ′
0 +K = E0. The released energy E0−E(t) is carried

away to r > R(t). This can be confirmed by integrating the energy conservation equation

inside the spherical surface r = R(t) as∫
V (t)

∂

∂t

[
(ρ + 4p)γ2 − p +

E2 + B2

8π
− GMργ

r

]
d3r

+

∫
V (t)

∇ ·
[
(ρ + 4p)γ2v +

E × B

4π
− GMργ

r
v

]
d3r = 0. (2.3.10)

Since this integration is cumbersome, we do not show the details of the calculation. We

have to point out that the integration with the volume V cannot be exchanged with the

time derivative in the first term since the volume V changes with time.

Next let us consider the case Q0,n 6= 0. Since the integration of equations (2.3.2)-

(2.3.7) is complex, we evaluate the total energy inside the closed boundary by a different

method. Note that equation (2.1.36), which represents equations of motion in the self-

similar space, indicates that the self-similar equations we derived are closely related to

the static relativistic MHD solutions except the existence of the thermal inertial term and

the electric field. We can derive the virial theorem for the relativistic self-similar MHD

(see appendix E);

3(Γ − 1)Uth + Uin + UM + UE + W = H + S, (2.3.11)

where

H =

∫
pr · dA

− 1

8π

∫ {
2 [(r · E)(E · dA) + (r · B)(B · dA)] − (E2 + B2)(r · dA)

}
, (2.3.12)
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Figure 2.13: k dependence of the non kinetic part of the total energy E ′ (solid curve) for
the shell and flux rope solutions.

and

S =

∫
dV

∂

∂t

(
r · E × B

4π

)
. (2.3.13)

Here A is the surface enclosing the volume V . The non-kinetic part of the total energy

E ′ can be written from equation (2.3.11) as

E ′ = −(3Γ − 4)Uth + H + S. (2.3.14)

We can evaluate E ′ inside the expanding spherical surface of r = R(t) by using the fact

that p = ρ = Br = Bφ = 0 at r = R(t) as

E ′ =



4A2
0a

3

3t
, (dipolar solution),

16A2
0a

5k2(1 − a2) cot2 T (a)

3t
, (shell solution),

16A2
0a

5k2 cot2 T (a)

3t
, (flux rope solution),

(2.3.15)

In all solutions, the non-kinetic part of the total energy does not depend on the toroidal

magnetic field because the toroidal magnetic field does not change the dynamics of the

expanding magnetic loops in the self-similar stage. This can be understood from the fact

that when we take Q0,n = 0, the solutions we derived satisfy equations (2.1.31), (2.1.32)

and (2.1.33) without any modification on the poloidal magnetic field. To understand this

reason, let us consider the equation of motion in the θ direction. Since v = ver, the force

balance should be attained in the θ direction (see Fig. 2.12). The pressure PQ is smaller
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Figure 2.14: The pressure enhancement ∆PA (left) and the density enhancement ∆DA

(right) for the shell solution are shown as a function of η/a. Solid curve is for b = 9a/10,
while the dashed and dot-dashed ones are for b = 3a/4 and b = a/2, respectively. Other
parameters are fixed at a = 0.8 and k = π/[4(a − b)].

for larger toroidal magnetic fields because PQ is proportional to −Q2
0,n (see equations

(2.2.10) for the dipolar solution, (B.1.4) and (B.1.11) for the shell solution, and (B.2.3)

and (B.2.9) for the flux rope solution). For larger toroidal magnetic fields, the magnetic

pressure gradient force by the toroidal magnetic field balances with the magnetic tension

force from the poloidal magnetic field. As a result, the existence of the toroidal magnetic

field modifies the plasma distribution, but does not change the dynamics.

Fig. 2.13 shows the k dependence of E ′
0 for the shell and flux rope solutions (note that

both solutions have the same k dependence). When the condition (2.2.32) is satisfied, the

total energy contained inside the magnetic loops is equal to K and conserved for the shell

and flux rope solutions because the energy flux is zero at r = R(t). When (2.2.32) is not

satisfied, the total energy is larger than K by E ′ (see equation (2.2.32)). The excess energy

is carried away to the region III (r > R(t)) to attain the free expansion, i.e., Dv/Dt = 0.

2.3.2 Shell and Flux Rope Structures

Let us examine the density and pressure distribution for the shell solution derived in §
2.2.3. We define the density and pressure enhancements as

∆PA =

[
2πη4

A2
0a

4 sin2 θ

]
PA, (2.3.16)

∆DA =

[
πGMη3(1 − η2)

2A2
0a

4 sin2 θ

]
DA, (2.3.17)
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∆PQ =

[
4π(m + n − 2)η2(1 − η2)

nQ0,mQ0,n sinm+n−2 θ

]
PQ, (2.3.18)

∆DQ =

[
2πGM(m + n − 2)η(1 − η2)2

nQ0,mQ0,n sinm+n−2 θ

]
DQ, (2.3.19)

These functions are normalized to be unity in region I, where the poloidal magnetic

field lines are radial for the shell solution. In Fig. 2.14, the pressure and density en-

hancements, ∆PA and ∆DA are plotted for b = a/2, 3a/4, 9a/10 when a = 0.8 and

k = π/[4(a − b)]. In all three cases, the pressure and density pulses appear at the top

of the magnetic loops. Their amplitudes are larger for a thinner shell. The peak of the

pressure enhancement appears behind that of the density enhancement. This structure

comes from the requirement for the force balance with the gravity. As mentioned in §
2.3.1, this relativistic self-similar solution is similar to the static solution in which the

force balance is attained. As plasma is swept up into the shell, the density increases in-

side the shell. To support the gravity by this excess density, the pressure gradient appears

behind the density enhancement. The density decrease behind the pressure enhancement

also comes from the requirement for the force balance. Since the decrease of the density

enables the buoyancy force to push the plasma in the radial direction, this buoyancy force

maintains the pressure pulse. These structures are identical to those in non-relativistic

solution (Low 1982).

Fig. 2.15 plots ∆PQ and ∆DQ for b = a/2, 3a/4, 9a/10 when a = 0.8 and k =

π/[4(a − b)]. As mentioned in § 2.2, the Lorentz force exerted by the toroidal magnetic

fields always reduces the pressure. A local minimum of the density enhancement ∆DQ

locates behind a local maximum of d∆PQ/dη. This structure also comes from the force

balance. Pressure gradient force balances with the buoyancy force in the rarefied region.

Next we examine the structure of the flux rope solution derived in § 2.2.4. We define

the normalized toroidal magnetic field strength as

∆Bφ(η) =
Bφt

2

Q0,n sinn−1 θ
. (2.3.20)

Solid curve in Fig. 2.16 shows ∆Bφ as a function of η for b = 0.95a, while the dash and

dot-dashed ones show that for b = 0.8a and b = 0.65a, respectively. Other parameters are

fixed at a = 0.8 and k = π/[4(a − b)]. The toroidal magnetic field has a peak inside the

flux rope. Its amplitude is larger for a larger a and a thinner shell. The shell structure also

appears behind the loop top (see Fig. 2.10 and 2.11). Solid curve in Fig. 2.17 shows ∆B2
φ,

which corresponds to the magnetic pressure by the toroidal magnetic field, as a function
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Figure 2.15: The pressure decrement ∆PQ (left) and the density decrement ∆DQ (right)
by the azimuthal field are shown as a function of η/a for the shell solution. Solid curve
is for b = 9a/10, while dashed and dot-dashed curves are for b = 3a/4 and b = a/2,
respectively. Other parameters are fixed at a = 0.8 and k = π/[4(a − b)].

of η for a = 0.8, b = 0.95a, and k = π/[4(a − b)]. Dashed and dot-dashed curves show

∆PQ and ∆DQ, respectively. Plasma density decreases inside the shell. The decrement of

the plasma density leads to the buoyancy force which balances with the pressure gradient

force in front of the shell. Behind the shell, the pressure gradient force balances with that

of the magnetic pressure. This effect is more prominent for the flux rope solution than

for the shell solution since the magnetic pressure is enhanced inside the flux rope.

2.3.3 The Role of the Displacement Current

We showed that PQ is always negative. On the other hand, PA can have either positive

or negative values. In this subsection, we obtain the condition for PA < 0.

First let us consider the dipolar solution derived in § 2.2.2. The condition that PA

given by equation (2.2.9) is positive in 0 <= η <= a is given by

2a2 − 3a2η2 − η4 + 2η6 >= 0. (2.3.21)

The critical value a∗ for PA > 0 in 0 <= η <= a is

a∗ =

√
69 + 11

√
33

12
' 0.958. (2.3.22)

When a > a∗, PA has negative values in the domain 0 <= η <= a. Since a denotes the

expansion speed of the magnetic loops at r = R(t), the above condition indicates that PA

can be negative for faster expansion.
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Next let us calculate the azimuthal component of the current density,

jφ = jrot + jdisp, (2.3.23)

where

jrot ≡
(∇× B)φ

4π
=

A0a
2

4πr3

2a2 − 5a2η2 + 5η4 − 2η6

(1 − η2)
5
2

sin θ, (2.3.24)

jdisp ≡ − 1

4π

∂Eφ

∂t
= −A0a

2

4πr3

η4 (6 − 3a2 − 5η2 + 2η4)

(1 − η2)
5
2

sin θ, (2.3.25)

and

jφ =
A0a

2

4πr3

2a2 − 3a2η2 − η4 + 2η6

(1 − η2)
3
2

sin θ. (2.3.26)

The current jrot is always positive, while jdisp has negative values for a larger a in 0 <=

η <= a. The displacement current jdisp cannot be ignored for a larger a and it reduces the

azimuthal current jφ. Thus the current jφ changes its sign for a larger a. Remember that

the pressure P is determined by the θ component of the equation of motion given by

(−∇p + j × B + ρeE)θ = 0. (2.3.27)

According to the definition of PA and PQ, the poloidal component of equation (2.3.27) is

given by
1

t4r

∂PA

∂θ
= jφBr. (2.3.28)

Since both ∂PA/∂θ and jφBr depend on θ by sin θ cos θ, and Br/ cos θ is positive, the sign

of PA is determined by that of jφ/ sin θ. Thus PA can be negative when the displacement

current jdisp dominates the current jrot. The condition that jφ
<= 0 coincides with the

condition that PA
<= 0 (i.e. a >= a∗, where a∗ is given by equation (2.3.22)).

Next let us consider the shell and flux rope solutions. Since these solutions are more

complex, the equation PA = 0 is solved numerically. Instead of using parameters a and b,

we introduce the following parameters,

Vmax = a, (2.3.29)

∆ =
a − b

a
. (2.3.30)

These parameters denote the maximum speed of the expanding loops and thickness of the

shell behind the loop top, respectively. Fig. 2.18 is a diagram showing whether the solution

that PA = 0 exists for the shell and flux rope solutions in the parameter space of Vmax

and ∆ for k = π/[4(a− b)]. Solutions where PA = 0 exist in the shaded area for the shell
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solution and in the grey area for the flux rope solution. Similarly to the dipolar solution,

the effect of the displacement current is more prominent for a larger Vmax. Generally, PA

is smaller for a larger Vmax and thicker shells in parallel that the displacement current

becomes important for larger Vmax and ∆. For the flux rope solution, the displacement

current is important not only in region II but in region I (right bottom region in Fig. 2.18).

In this case, PA is negative for b >= 0.817.

2.3.4 Application to SGR Explosions

SGR flares can be triggered by energy injection into magnetic loops at the surface of a

strongly magnetized neutron star (e.g., Lyutikov 2006). When sufficiently large energy is

injected, the magnetic loops will become dynamically unstable, and expand relativistically.

Magnetic energy release in the expanding magnetic loops can be the origin of SGR flares.

The expanding magnetic loops will also produce magnetosonic waves propagating ahead

of the loops. High energy particles can be produced in the magnetic reconnection inside

the loops, and in shock fronts formed ahead of the loops.

We did not solve the structure of the region ahead of the magnetic loops (r > R(t)).

When the outer region is a vacuum, electromagnetic waves will be emitted from the

boundary at r = R(t). When the plasma density is much larger than the Goldreich-

Julian density (Goldreich & Julian 1969) and the wave frequency is much smaller than
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the plasma frequency, the outer plasma can be studied by using MHD equations. It will

be our future work to connect the self-similar solutions inside r = R(t) and the solutions

in r >= R(t).

Now let us estimate the energy for the SGR explosion based on the self-similar solu-

tions. Let us take the field strength to be 1015 Gauss (Kouveliotou et al. 1998; Ibrahim

et al. 2002; Ibrahim et al. 2003) at the stellar radius Rs = 106 cm. This leads to

2A0a
2

R2
s

= 1015 Gauss. (2.3.31)

By assuming that the self-similar expansion begins when t0 = Rs/a, the released energy

from the expanding magnetic loops can be estimated from equation (2.3.15) as

E ′ =


6 × 1046 erg, (dipolar solution),
2 × 1047∆−2 erg, (shell solution),
8 × 1047∆−2 erg, (flux rope solution).

(2.3.32)

Here we take a = Vmax ' 0.9 and k = π/[4(a− b)]. These results agree with the observed

energy of SGR giant flares (Hurley et al. 2005; Palmer et al. 2005; Terasawa et al. 2005).

Note that the total energy contained in the expanding magnetic loops is more energetic

for thinner shells. The non-kinetic part of the total energy E ′ is inversely proportional to

the square of the shell thickness. When some fraction of the kinetic energy K is converted

to the electromagnetic energy, the released energy can be larger than that estimated by

equation (2.3.32).

2.4 Summary & Discussions

By extending the self-similar solutions derived by Low (1982), we derived self-similar

solutions of relativistically expanding magnetic loops taking into account the toroidal

magnetic fields. The dipolar solution derived in § 2.2.2 gives us an insight into the

relativistic expansion of the magnetic loops because of its simplicity. However, the shell

and flux rope solutions derived in § 2.2.3, 2.2.4 have more physically interesting properties

such as an enhanced magnetic pressure at the shells and flux rope structures. Such

configurations might be more probable for SGR flares.

The equations of motion in the self-similar stage are similar to those of the static

equilibrium state except the existence of the relativistic thermal inertial term and the

electric field. This fact allows us to evaluate the non-kinetic part of the total energy in

the magnetic loops by using the virial theorem. The magnetic loops with shell or flux rope
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area) and for the flux the rope solution (grey area).

structures carry more energy than the simple dipole solution. The energy is comparable

to the observed energy of the SGR giant flares.

In relativistically expanding magnetic loops, the effect of the displacement current

becomes important. In dipolar solution, the displacement current becomes larger than

the real current ∇× B/(4π) for faster expansion speed (Vmax > a∗). This effect reduces

the toroidal current and weakens the magnetic tension force. To balance the reduced

magnetic tension force, the pressure decreases.

We found that the energy is transferred to r > R(t) in dipolar solutions. In the shell

and flux rope solutions, the energy is transferred to r > R(t) unless condition (2.2.32) is

satisfied. The condition can be interpreted as that for the total reflection of the MHD

waves in the shell. Dipolar solutions always have leakage (transmission of Poynting flux

to the region r >= R(t)) because Bθ 6= 0 at r = R(t). The shell and flux rope solutions

have perfectly reflecting solutions in which the total energy in r < R(t) is conserved. It

means that the solutions are energy eigenstates of the system. The eigenstates can be

obtained by adjusting the parameter k.

In this chapter, we obtained solutions for freely expanding magnetic loops, i.e., Dv/Dt =

0. We assumed that the magnetic loops have sufficiently large energy to drive the ex-
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pansion. When the flux function Ã increases with time, the toroidal magnetic fields will

also increase time. The toroidal magnetic fields will then affect the dynamics through the

magnetic pressure. Such solutions can describe the accelerating magnetic loops.

Magnetic fields can be expressed as the sum of the Fourier modes in the polar angle.

The modes and their amplitudes should be determined at the boundary where the mag-

netic twist is injected on the surface of the star. It is not shown but we can construct

more complex solutions that the poloidal magnetic fields are expressed by the sum of the

Fourier modes, i.e., Ã ∝ sinn θ. In actual explosion, the opening angle of the expanding

magnetic loops depends on the location at which the magnetic twist is injected on the

surface of the central star. Such a solution may be expressed as the sum of the Fourier

modes for the poloidal and toroidal magnetic fields. We should note that SGR flares

are not necessarily axisymmetric. Models including the non-axisymmetrically expanding

magnetic loops will be a subject of future works.



Chapter 3

Requirement for the Relativistic
Outflow from Relativistic Magnetic
Reconnection

Until recent years, there are few theoretical studies on the relativistic magnetic reconnec-

tion (Blackman & Field 1994; Lyutikov & Uzdensky 2003; Lyubarsky 2005). Lyubarsky

(2005) studied the steady state Sweet-Parker type relativistic magnetic reconnection

model. They concluded that the reconnection rate becomes closer to unity by the ef-

fect of the Lorentz contraction and that the outflow is accelerated in proportion to the

magnetization parameter of the inflow. In their treatment, all the magnetic energy is

assumed to be converted to the outflow kinetic energy; They ignored the gas pressure

enhancement in the outflow region. Lyubarsky (2005) pointed out the importance of the

increase in the inertia by the gas pressure. In relativistic magnetic reconnection, the ratio

of thermal to rest mass energy densities is larger than unity to achieve the pressure balance

across the current sheet. By this enhanced gas pressure, plasma inertia increases through

the relativistic effect. He concluded that the outflow speed is only mildly relativistic at

most in contrast to former results. The reconnection rate is almost equal to the inverse

of the aspect ratio of the dissipation region δ/L, where δ and L are the size of dissipation

region along the inflow and outflow directions, respectively.

Now let us reconsider the effects of gas pressure inside the current sheet. The pressure

equilibrium across the current sheet implies

pN =
B2

x,i

8π
, (3.0.1)

where pN is the gas pressure at the neutral point and Bx,i is the magnetic field in the

inflow region which reconnects in the diffusion region. When the magnetic energy density

55
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Figure 3.1: Schematic picture of the Sweet-Parker magnetic reconnection in X −Y plane.
The electric resistivity is non-zero only in the shaded region. Solid curves depict magnetic
field lines. Stream lines are shown by dashed curves.

exceeds the rest mass energy density in the inflow region, also the thermal energy density

pN/(Γ− 1), where Γ is the specific heat ratio, exceeds the rest mass energy density. This

gas pressure has two effects. First, the enhanced thermal energy leads to the increase in

the inertia. It becomes harder to accelerate plasma for a larger thermal energy. Second,

the expansion due to the enhanced gas pressure accelerates the plasma. In addition, the

expansion leads to decrease in the inertia since enthalpy decreases. Lyubarsky (2005)

estimated the outflow velocity by including the pressure gradient force, but the effect of

the enthalpy decrease was ignored. When the plasma expands, the plasma enthalpy, in

turn, the inertia should decrease. Our question is which effect is more efficient. In other

words, we would like to answer whether relativistically hot plasma can be accelerated

by the gas pressure gradient force, or, can not be accelerated because of the enhanced

inertia. It depends on the pressure gradient between the neutral point and the outflow

region. If the gas pressure in the outflow region is much smaller than that at the neutral

point, plasma will be accelerated to relativistic speed by the pressure gradient force and

decrease in the inertia.

This chapter is organized as follows: In § 3.1, we present the basic equations and the

model. The results are shown in § 3.2. Lastly, we summarize and discuss our results in

§ 3.3.
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3.1 Basic Equations and Model

We consider a steady state reconnection in the Cartesian coordinates, (X, Y, Z). Let the

neutral sheet be located on the plane of Y = 0. All the physical variables are assumed

to be independent of Z for simplicity. The electric resistivity is assumed to be applicable

only within the diffusion region of |X| ≤ L and |Y | ≤ δ (see, Fig. 3.1). Thus, the ideal

relativistic MHD equations are applied outside the diffusion region. The X-component

of the magnetic field, the reconnection field, is positive (Bx > 0) in the upper half space

(Y > 0), while it is negative in the lower half space. The Z-component of magnetic field,

the guide field, is positive everywhere (Bz > 0). We assume the point symmetry around

the origin and reflection symmetry with respect to X = 0. Thus only the first quadrant

is considered in the following.

A plasma element flows across the diffusion region along the stream line as shown by

the dashed curves in Fig. 3.1. The flow velocity is assumed to be constant at vi = cβi

in the inflow region, where βi is the inflow velocity in unit of c. The inflow is assumed

to be cold and the thermal pressure is neglected. The magnetic energy is converted to

the thermal energy through the reconnection in the diffusion region. Subsequently, the

plasma is accelerated by the gas pressure gradient and electromagnetic forces to flow out

in the X-direction. The outflow velocity is assumed to be constant as vo = cβo in the

outflow region. The plasma is assumed to be an ideal gas of which specific heat ratio is

Γ. The proper density (ρ), proper gas pressure (p), and magnetic field in observer frame

(B) are assumed to be uniform in the inflow and outflow regions. All the variables with

the subscript i denote the values in the inflow region, while those with the subscripts o

and N do the values in the outflow region and the neutral point, respectively.

From the mass conservation, we obtain

ρiγiβiL = ρoγoβoδ, (3.1.1)

where γ denotes the Lorentz factor,

γ = (1 − β2)−1/2. (3.1.2)

The energy conservation gives

ρic
2γ2

i βiL (1 + σi) = ρoc
2γ2

oβoδ (1 + αo + σo) , (3.1.3)

where

α ≡ Γ

Γ − 1

p

ρc2
, (3.1.4)
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and

σ =
|B|2

4πρc2γ2
. (3.1.5)

Here we assume that the thermal pressure is small and can be ignored in the inflow

region. The symbol α denotes the ratio of the thermal enthalpy and rest mass energy.

The symbol σ denotes the magnetization parameter and B does the magnetic field vector

in the observer frame. From equations (3.1.1) and (3.1.3), we obtain

(1 + σi) γi = (1 + αo + σo) γo. (3.1.6)

This equation is equivalent to the Bernoulli’s theorem and means that the specific enthalpy

remains constant between the inflow and outflow. The enthalpy is the product of the

Lorentz factor and inertia. The inertia includes thermal and magnetic energies as well

as that of the rest mass, since we are dealing with relativistic plasma. For an ultra-

relativistic outflow (γo À 1), the inertia in the outflow region should be much smaller

than the specific enthalpy of the inflow.

We obtain

βiBz,iL = βoBz,oδ, (3.1.7)

from the Z-component of the induction equation and

βiBx,i = βoBy,o. (3.1.8)

from the X- and Y-component of the Faraday’s law.

When the inflow (βi, Bx,i, Bz,i, and ρi) and the size of the diffusion region (L and δ) are

given, equations (3.1.1), (3.1.6), (3.1.7), and (3.1.8) give us four independent relations for

five unknowns, βo, Bx,o, Bz,o, ρo, and po. An independent relation is required to determine

the outflow. A simple solution to close the equation is to ignore the thermal pressure in

the outflow region by setting po = 0 (Blackman & Field 1994; Lyutikov & Uzdensky 2003)

However, as Lyubarsky (2005) pointed out, we cannot ignore the increase in inertia due to

the enhanced thermal energy. Instead, Lyubarsky (2005) used the momentum equation

between the neutral point and the outflow region to close the system. He estimated

that the pressure gradient between the neutral point and the outflow region is at most

δp = pN − po ∼ B2
x,i/8π. Since pN = B2

i /(8π) from the pressure balance condition across

the current sheet (see equation (3.0.1)), this approximation is in parallel to po ∼ 0.

The thermal energy is used for acceleration by the expansion. When plasma expands,

the plasma enthalpy, in turn, the plasma inertia should decreases. This effect was not

included in his treatment.
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In this chapter, we study the case when 0 ≤ po ≤ pN by including the effect of

decreasing in the enthalpy. For this purpose, we use the entropy conservation equation

instead of the momentum conservation equation. The entropy is a natural variable to use

since it describes the amount of the thermal energy and is independent of the other field

variables such as the pressure and magnetic field strength. The entropy never decreases.

It increases by the magnetic energy release into the thermal energy but will be nearly

constant during the subsequent expansion phase. Thus we assumed that the magnetic

energy release is prompt and the entropy is conserved between the neutral point and the

outflow region. The assumption that the magnetic energy is promptly converted into

the thermal energy is plausible by considering the pressure balance across the current

sheet given in equation (3.0.1). When the entropy is constant along the stream line

after the prompt energy conversion, the plasma is accelerated by the pressure gradient

and the inertia decrease. Note that one can derive the energy conservation equation

from the entropy and momentum conservation equations. While the difference between

the momentum equation and the energy conservation equation vanishes for an ultra-

relativistic flow, the entropy conservation equation is quite different from the energy

conservation equation. Furthermore we need to evaluate an average Lorentz force to

integrate the momentum equation. The evaluation can be replaced by the constancy of

the outflow entropy. The constancy of the outflow entropy is physics oriented while the

average Lorentz force is only order of magnitude estimate.

If we have one more relation, we can determine the inflow velocity, i.e., the recon-

nection rate. Blackman & Field (1994) and Lyutikov & Uzdensky (2003) imposed the

incompressibility, ρi = ρo to evaluate the reconnection rate. The incompressibility is a

good approximation when the flow is subsonic. However, it is not a good approximation

for a relativistic flow since the sound speed is limited at c/
√

3 (see, e.g., Landau & Lifshitz

1959; Mihalas & Mihalas 1984, or Appendix A.3.1) and the flow should be supersonic.

On the other hand, Lyubarsky (2005) evaluated the reconnection rate applying γo = 1 for

the outflow. This evaluation is based on his result that the outflow is non-relativistic or

semi-relativistic at most. The outflow velocity is slow in his model since he neglected the

decrease in the enthalpy due to the expansion. At this moment, we have no alternative

idea to fix the reconnection rate and the inflow velocity (reconnection rate) is left as a

free parameter.

We assume that the density of the plasma in the neutral sheet is the same as that of
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the inflow,

ρN = ρi. (3.1.9)

In other words, the magnetic energy release is so prompt that the plasma does not have

time to expand in the neutral sheet. We assume that the plasma evolves adiabatically

after the prompt heating by magnetic energy release. We then obtain the closure relation,

pN

ρΓ
N

=
po

ρΓ
o

. (3.1.10)

Note that we do not assume incompressibility between the neutral sheet and the outflow

region. We rewrite the second term in the right hand side of equation (3.1.6) as

αo =
Γγ2

i

2(Γ − 1)
σix

Γ−1 cos2 θi, (3.1.11)

where

x ≡ ρo

ρi

=
γiβiL

γoβoδ
, (3.1.12)

and

tan θi =
Bz,i

Bx,i

, (3.1.13)

using equations (3.0.1), (3.1.1), (3.1.9), and (3.1.10). The third term in the right hand

side of the equation (3.1.6) is rewritten as

σo = σix cos2 θi

[(
δ

L

)2

+ tan2 θi

]
, (3.1.14)

by using equations (3.1.1) and (3.1.8). Substituting equations (3.1.11) and (3.1.14) into

equation (3.1.6), we obtain

(1 + σi)γi = hoγo, (3.1.15)

where

ho = 1 + σi cos2 θi

{
2γ2

i x
1
3 +

[(
δ

L

)2

+ tan2 θi

]
x

}
. (3.1.16)

We assume Γ = 4/3 in the following. By prescribing the inflow velocity βi, magnetiza-

tion parameter σi, pitch angle θi, aspect ratio L/δ, and energy conversion parameter f ,

the outflow velocity is given by solving equation (3.1.15) numerically with the bisection

method. The other variables in the outflow region are obtained from equations (3.1.1),

(3.1.8), (3.1.7), (3.1.11), and (3.1.14).
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3.2 Results

3.2.1 Case of Bz = 0 (θi = 0)

First, we consider the case in which the guide field (Bz) vanishes. The thick curves in

Fig. 3.2 denote the specific momentum of the outflow uo ≡ γoβo as a function of the

magnetization parameter of the inflow σi, for βi = 10−6. The thin curves denote the ratio

of the thermal enthalpy to the rest mass energy of the outflow, αo. The solid curves are

for the aspect ratio L/δ=10, while the dashed and dot-dashed ones are for L/δ=100 and

1000, respectively.

The specific momentum of the outflow increases with σi, when βi and L/δ are fixed.

It approaches to the saturation value in the limit of large σi, while it is proportional to
√

σi when σi is small. The slope, d ln uo/d ln σi, is steep for the intermediate σi. The ratio

of the thermal enthalpy to the rest mass energy of the outflow αo, increases with increase

in σi without saturation.

This result can be explained as follows. When αo and (δ/L)2 are much smaller than

unity (αi ¿ 1 and (δ/L)2 ¿ 1), equation (3.1.15) reduces to equation (32) of Lyutikov &

Uzdensky (2003)

(1 + σi)γi = γo. (3.2.1)

When βi is negligibly small and σi is much smaller than unity, the outflow velocity is

βo '
√

2σi =
√

2βA where βA is the Alfvén velocity in unit of c. This result is equivalent

to that of the conventional Sweet-Parker reconnection model when po = pi (see, e.g.,

Priest & Forbes (2000)). When σi
>∼ 1, βi ¿ 1, and αo ¿ 1, the outflow velocity is close

to the light speed and the specific momentum is proportional to uo ' σi + 1,

Next we consider the case that the outflow is hot, i.e., αo
>∼ 1. When the aspect ratio is

much larger than unity ((L/δ)2 À 1) and the inflow velocity is negligibly small so that γi

is very close to unity, the magnetization parameter σi should be appreciably larger than

unity for the plasma to be hot (see, equation (3.1.6)). Then equation (3.1.15) can be

rewritten as

1 + σi = 2σi

(
uiL

uoδ

) 1
3

γiγo. (3.2.2)

The outflow velocity is obtained by taking ui ' βi and uo ' γo. Then the specific

momentum of the outflow is evaluated to be

uo ∼ usat
o =

√
1

8

δ

L

1

βi

, (3.2.3)
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Figure 3.2: Specific momentum of the outflow uo ≡ γoβo (thick curves) as a function of
the magnetization parameter σi for βi = 10−6. The thin curves denote the ratio of the
thermal enthalpy to rest mass energy in the outflow region, αo. The solid curves are for
L/δ=10, while the dashed and dot-dashed ones are for L/δ=100 and 1000, respectively.

by using (1 + σi)/σi ' 1.

This equation indicates two important points. First, the saturated outflow velocity

does not depend on σi. The increase in the magnetic energy is balanced with the increase

in the thermal energy and the magnetic energy is not used for acceleration. Another

important result is that the outflow velocity is reciprocal to the square root of the in-

flow velocity. This implies that the outflow velocity is smaller for a larger reconnection

rate. This is the most remarkable difference between the non-relativistic and relativistic

reconnections. Since the outflow velocity is nearly constant at the Alfvén velocity in the

non-relativistic reconnection, the reconnection rate is larger for a larger inflow velocity.

On the other hand, the outflow velocity is appreciably smaller than the Alfvén velocity

for a relativistically hot plasma because of the large inertia (enthalpy). The Ohmic heat-

ing rate is larger for a larger reconnection rate. A hot relativistic plasma is hard to be

accelerated and tends to be jammed in the diffusion region. Hence the outflow is hotter

and slower when the reconnection rate is larger.

Note that this effect is more prominent when the aspect ratio is larger. When the

aspect ratio is larger, the outflow is squeezed more and becomes denser and hotter.

The outflow velocity is relativistic only when the outflow is cold and hence the inflow
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velocity is quite small. Equation (3.2.3) gives us the condition for a relativistic outflow,

βi ¿ δ/L . (3.2.4)

Next we derive the condition for the plasma to be relativistically hot, αo > 1 in the

outflow region. For this purpose, we consider the condition of αo = 1, i.e., that the

thermal to rest mass energy density is equal to unity. Substituting αo = 1 into equations

(3.1.15) and (3.1.16), we obtain

σi = 2
γo

γi

− 1, (3.2.5)

2γ2
i

(
2
γo

γi

− 1

)(
uiL

uoδ

) 1
3

− 1 = 0. (3.2.6)

Here we assume θi = 0 and (δ/L)2 ¿ 1. When the inflow is non-relativistic (γi ' 1) and

the outflow is ultra-relativistic (uo ' γo), equation (3.2.6) has the solution,

uo = u∗ =

√
1

64

δ

L

1

βi

. (3.2.7)

Substituting equation (3.2.7) into (3.2.5), we obtain

σi = σ∗ =

√
1

16

δ

L

1

βi

− 1. (3.2.8)

This approximation is valid when

βi < βi,max ≡ 1

64

δ

L
. (3.2.9)

As σi increases, αo increases monotonically for fixed βi, L/δ, and θi (see, Fig. 3.2). Thus

the outflow is relativistically hot when σi > σ∗. When 1 < σi < σ∗, the outflow has a

relativistic speed (uo > 1) while the thermal energy is smaller than the rest mass energy

(i.e., cold, αo < 1).

Note that the saturated specific momentum is only three times larger than the critical

specific momentum of the outflow u∗,

usat
o = 2

√
2u∗. (3.2.10)

This indicates that the excess magnetic energy contributes not to further acceleration but

to further heating when σi exceeds σ∗.

Next we examine dependence of the outflow velocity on the inflow velocity ui. Fig. 3.3

shows uo (thick curves) and αo (thin curves) as a function of log ui for σi = 100, and
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Figure 3.3: Dependence of the specific momentum of the outflow (thick curves) and αo

(thin curves) on the inflow velocity log ui for σi = 100, and θi = 0. Solid curves denote
for L/δ = 10, while dashed curves do for L/δ = 100.

θi = 0. The solid curves are for L/δ = 10 while dashed curves are for L/δ = 100. The

outflow momentum is larger for a smaller inflow velocity when σi, L/δ, and θi are fixed.

It is saturates at uo ' σi + 1 in the limit of small ui. The ratio of thermal to rest mass

energy densities, αo, increases monotonically with increasing ui. This dependence of αo

on ui is consistent with the discussion below equation (3.2.3).

Note that no solution exists when ui is larger than a critical value. Equation (3.2.9)

gives a rule of thumb for the existence of a solution. When the inflow velocity exceeds the

critical value, the outflow is too hot to be accelerated. When the inflow has its maximum

speed given by equation (3.2.9), the reconnection rate is given as

βi,max

βo

' 1

64

δ

L
, (3.2.11)

where we used γo ' 1 and βo ' 1. This result is essentially the same as equation (6)

of Lyubarsky (2005). As discussed in the paragraph below equation (3.2.3), the outflow

velocity is smaller for a larger reconnection rate in relativistic reconnection (σi À 1). The

plasma tends to get jammed in the diffusion region and the pressure gradient force is no

more efficient (pN ' po). Thus the results obtained by Lyubarsky (2005) corresponds to

the case when the reconnection rate is large.

Note that the flow is roughly incompressible in this limit. Since the inflow and outflow
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Figure 3.4: The contour plots of specific momentum of the outflow (thick solid curves) and
log σo (thin solid curves) are shown on log ui-log σi plane for L/δ = 10, and θi = 0. The
dashed curve denotes the contour of αo = 1. Above the curve, plasma is relativistically
hot in the outflow region. No solution exists in the grey area.

speeds are not ultra-relativistic and the sound speed is close to the light speed, i.e.,

ccs ' c/
√

3, the flow can roughly be treated as incompressible.

When βi ∼ βi,max, the Ohm’s law can approximately be written as

E = ηj, (3.2.12)

since the inflow and outflow speeds are non-relativistic or semi-relativistic at most. Here,

η is the electric resistivity. The Z-component of the electric field outside the dissipation

region is evaluated from the MHD condition,

Ez = βiBi. (3.2.13)

The current density inside the dissipation region is evaluated as

jz '
cBi

4πδ
, (3.2.14)
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from the Ampere’s law. Since the Z-component of the electric field is uniform in a steady

state, we obtain

βi '
1

8
R

−1/2
M , (3.2.15)

from equations (3.2.9), (3.2.12), (3.2.13), and (3.2.14). Here RM is the magnetic Reynolds

number defined by

RM =
4πL

ηc
. (3.2.16)

Equation (3.2.15) is essentially the same as (8) of Lyubarsky (2005).

Fig. 3.4 shows the specific momentum of the outflow (thick solid curves) and log σo

(thin solid curves) on log ui − log σi plane for L/δ = 10, and θi = 0. The dashed curve

denotes the contour of αo = 1. Above the curve, plasma is relativistically hot in the

outflow region. No solution exists in the grey area. When the outflow is cold, the specific

momentum approaches uo ' σi + 1 in the limit of small ui, as shown in equation (3.2.1).

When the outflow is hot, the specific momentum saturates at usat in the limit of large σi.

Then the magnetization parameter in the outflow region can be estimated as

σo

σi

' 2
√

2β
3
2
i

(
δ

L

) 1
2

, (3.2.17)

from equation (3.1.14) and (3.2.3). Here we assume γi ' 1. The magnetic energy is

converted to the plasma energy more efficiently when βi is smaller and L/δ is larger.

3.2.2 Case of Bz 6= 0 (θi 6= 0)

Next we consider the effects of the guide field (Bz). The specific momentum of the outflow

is shown as a function of σi for βi = 10−6 and L/δ = 10 in Fig. 3.5. The thick solid curve is

for the case without guide field, θi = 0, while thin solid, dashed, and dot-dashed ones are

for θi = π/8, π/4, and 3π/8, respectively. As in the case of Bz = 0, the specific momentum

of the outflow is larger for a larger σi when βi, L/δ, and f are fixed. It saturates in the limit

of large σi. The saturation value of the specific momentum increases with θi, although it

does not depend on θi when σi is small. The saturation value of the specific momentum

usat(θi) can be obtained as

usat
o (θi) =

1

cos θ3
i

√
1

8

δ

L

1

βi

≡ usat
o (θi = 0)

cos3 θi

. (3.2.18)

from equation (3.1.15) and (3.1.16) by taking αo À 1, B2
z,o/(4πρoc

2γ2
o) and taking ui ' βi

and uo ' γi. The outflow velocity is larger for a larger θi. This effect is due to expansion
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Figure 3.5: Dependence of the specific momentum of the outflow on σi and the inclination
angle θi for βi = 10−6 and L/δ = 10. The thick solid curve is for θi = 0, while thin solid,
dashed, and dot-dashed ones are for θi = π/8, π/4, and 3π/8, respectively.

of the plasma during the reconnection; the magnetic energy of the guide field is used for

acceleration through the magnetic pressure in our model. If we assume incompressibility,

this effect will disappear. For a larger Bz, plasma can be treated as incompressible since

fast magnetosonic wave speed exceeds the plasma bulk speed.

3.3 Summary & Discussions

We extended the Sweet-Parker type steady state magnetic reconnection into relativistic

plasma. Our treatment is based on the conservation laws of mass and energy. We em-

ployed the entropy conservation between the neutral point and the outflow region to study

the effects of the pressure gradient force and the decreasing in the inertia.

Our results can be summarized as follows,

• non-relativistic case (σi < 1): vo ∼
√

2vA

• cold plasma (1 < σi < σ∗): uo ∼ σi + 1

• hot plasma (σi > σ∗): uo ∼ β
− 1

2
i

(
δ
L

) 1
2
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When the plasma is cold, the specific momentum of the outflow is given by uo ∼ σi + 1.

This result coincides with equation (32) of Lyutikov & Uzdensky (2003). However, in

contrast to their results, the reconnection rate should be much smaller to realize the cold

outflow for large σi. This conflict comes from the neglect of the thermal pressure of the

outflow in their treatment. When one neglects the thermal pressure in the outflow region,

the outflow is always cold and the faster reconnection could be realized. This assumption

is not valid for a relativistic magnetic reconnection since a fast reconnection heats the

plasma. Increase in the inertia due to the thermalization results in a slower outflow when

σi À 1. When the plasma is hot, the specific momentum of the outflow approaches a

certain maximum value given by equation (3.2.3). The outflow speed becomes slower for

a larger reconnection rate. The result by Lyubarsky (2005) that the outflow speed is sub-

relativistic in the relativistically hot outflow can be reproduced when the reconnection

rate is large.

We showed that the outflow is relativistically hot when σi > σ∗. Can this thermal

energy be converted to kinetic energy? Fig. 3.2 shows that the outflow speed increases

when the aspect ratio L/δ decreases. The aspect ratio is taken as a free parameter in

our model as well as in the conventional Sweet-Parker model. When the thermal energy

inside the dissipation region becomes larger than that of the rest mass, the dissipation

region expands in Y -direction by the excess thermal pressure. Then the aspect ratio

becomes smaller. This leads to the decrease in plasma temperature, i.e., the decrease

in the inertia. Zenitani & Hesse (2008a) showed that the magnetic reconnection is self-

regulated so as to increase the reconnection rate by changing its aspect ratio. Since the

energy flux flowing into the dissipation region is fixed in steady state and the momentum

is conserved, the outflow velocity becomes larger (see, equation (3.2.3)). Another solution

to convert the thermal energy to kinetic energy is to spread out the relativistically hot

plasma adiabatically into a fan in the outflow region (Swisdak et al. 2008). This also leads

to decrease in temperature, which enables the plasma to be accelerated.

In our treatment, we assumed that the plasma density around the neutral point is

equal to that of the inflow (see, equation (3.1.9)). This assumption is plausible since the

inflow velocity is much less than the fast magnetosonic wave speed of the inflow when

L/δ À 1 (see equation (3.2.9)) and hence the compression is weak. However, Zenitani

& Hesse (2008a) showed that the plasma density inside the current sheet is a few times

larger than that of the inflow. Thus we simply relax this condition as

ρN = gρi, (3.3.1)
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where g is taken as a free parameter. By replacing equation (3.1.9) by (3.3.1), αo is

rewritten as

αo =
Γγ2

i

2(Γ − 1)gΓ
σix

Γ−1 cos2 θi, (3.3.2)

This equation indicates that the inertia is smaller for a larger g. Since the plasma entropy

is smaller for a larger plasma density, plasma enthalpy also becomes smaller. This leads

to the decrease in the inertia. By using relation (3.3.1), the saturated velocity (3.2.3) is

replaced by

usat(g) =
g2

cos3 θi

√
1

8

δ

L

1

βi

≡ g2usat(g = 1). (3.3.3)

Here we took Γ = 4/3. Thus the outflow velocity is larger for a larger g.

Our treatment is based on the relativistic MHD, but it is interesting to compare

our results with recent numerical works on particle dynamics in relativistic reconnection

(Zenitani & Hoshino 2001; Jaroschek et al. 2004; Zenitani & Hoshino 2007; Karlický

2008; Lyubarsky & Liverts 2008). Zenitani & Hoshino (2007) showed that the evolution

of the relativistic magnetic reconnection looks like the Sweet-Parker type. In their paper,

the inflow and the outflow maximum velocity is about 0.4c and 0.9c, respectively when

σi ' 40. The aspect ratio L/δ is about 10. The inflow speed is still non-relativistic and the

outflow velocity is much smaller than the inflow Alfvén velocity. Interestingly, the inflow

velocity βi is of order the inverse of the aspect ratio, δ/L (note that Zenitani & Hoshino

(2007) showed the maximum inflow velocity). This result may indicate that the magnetic

energy flowing into the dissipation region is mainly converted to the thermal energy. Then

the outflow can not be accelerated up to ultra-relativistic speed (see, equation (3.2.3)).

But we have to take care the effect of the non-thermal particles which are mainly generated

around the X-point of the magnetic reconnection. Some part of the magnetic energy is

carried away by the non-thermal particles and this effect can not be taken into account

by MHD.



Chapter 4

Numerical Study of the Relativistic
Magnetic Reconnection

In the previous chapter, the possibility of the relativistic outflow from the relativistic

magnetic reconnection is discussed. In this chapter, we study the relativistic magnetic

reconnection by using Particle-In-Cell (PIC) code.

4.1 Simulation Methods

4.1.1 Basic Equations

The simulation is performed by using 2-dimensional relativistic PIC code (see Birdsall &

Langdon 2001, for details). In this code, we solve the following basic equations;

d

dt
(miγivi) = qi

(
E +

vi

c
× B

)
, (4.1.1)

dxi

dt
= vi, (4.1.2)

1

c

∂B

∂t
= −∇× E, (4.1.3)

1

c

∂E

∂t
= ∇× B − 4π

c
j, (4.1.4)

∇ · E = 4πρe, (4.1.5)

∇ · B = 0, (4.1.6)

where xi, vi, γi, mi, and qi are the position, velocity, Lorentz factor, rest mass, and the

charge for the ith particle and E, B, ρe, j are the electric field, magnetic field, charge

density, and the charge current, respectively.

70
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The particle velocities and positions are updated by solving equations (4.1.1) and

(4.1.2). The current density ρe and the charge current j are then calculated by scattering

the particle information on the grid by

ρe(X) =
∑

i

qiS(xi − X), (4.1.7)

j(X) =
∑

i

qiviS(xi − X), (4.1.8)

where Σ denotes the sum of all particles and S(x) is a shape factor. Equations (4.1.1)

is solved by a conventional Buneman-Borris method (see Birdsall & Langdon 2001), and

the electromagnetic fields are solved implicitly by using Incomplete Cholesky Conjugate

Gradient (ICCG) method.

Since the particle information is scattered to grids by using the shape factor S following

equations (4.1.7) and (4.1.8), the charge conservation equation is not satisfied exactly and

the condition of constraint (4.1.5) is thus sometimes violated. To avoid this, we introduce

a scalar function δφ defined as

E = E′ −∇(δφ), (4.1.9)

where E′ is the electric field obtained by solving equation (4.1.4), and E is the corrected

electric field which satisfies equation (4.1.5). By taking the divergence of equation (4.1.9),

we obtain

∇2φ = ∇ · E′ − 4πρe. (4.1.10)

By solving the Poisson equation (4.1.10), the corrected electric field E is obtained from

equation (4.1.9). The constraint (4.1.6) is satisfied by using the staggered mesh. By

using the staggered mesh and leap-frog method, we solve equations (4.1.1)-(4.1.8) with

second-order accuracy.

4.1.2 Model

We consider the collisionless pair plasma. As the initial condition, we use a relativistic

Harris configuration which satisfies the Vlasov equation (Harris 1962; Kirk & Skjæraasen

2003). The magnetic fields are given by

B = B0 tanh
(y

λ

)
ex. (4.1.11)

The particle distribution function is given by

fs = fs,cs + fs,bg, (4.1.12)
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Figure 4.1: Left: Color shows the plasma density and black curves show the magnetic
field lines for the whole simulation box at t = 0. Right: Plasma density (solid curve), Bx

(dashed curve) and jz (dash-dotted curve) across the current sheet. The plasma density
and the charge current are normalized by those at Y = 0 of the initial state and Bx is
normalized by B0.

where the subscript s denotes the particle species, and the subscripts ‘cs’ and ‘bg’ denote

the plasma in the current sheet and background plasmas, respectively. The functions fs,cs

and fs,bg are given by

fs,cs =
ncs

4πm2ckBTcsK2(mc2/kBTcs)

1

cosh2(y/λ)
exp

[
−γs(ε − βsmc2uz)

kBTcs

]
, (4.1.13)

fs,bg =
nbg

4πm2ckBTbgK2(mc2/kBTbg)
exp

[
− ε

kBTbg

]
. (4.1.14)

where n, ε, u, βs, γs, kB, T , K2, are the plasma proper density, the particle energy, the

particle four velocity, the drift velocity of the current sheet in unit of c, the Lorentz factor

of the drift velocity, the Boltzmann constant, the plasma temperature, and the modified

Bessel function of the second kind, respectively. Thickness of the current sheet is denoted

by λ.

The number of grids is (1024, 512) on the X−Y plane. The grid size is normalized by

λ and the time step is normalized by the light crossing time τc ≡ λ/c. We used 10 grids on

λ. The boundary condition is periodic in both directions. The boundaries are located at

X = −51.2λ, 51.2λ and Y = −38.4λ, 12.8λ (see Fig. 4.1). Since the magnetic field lines

change their directions in the current sheets, we set two current sheets at Y = −25.6λ

and Y = 0 (see Fig. 4.1). We hereafter concentrate on the upper current sheet Y = 0.

To trigger the magnetic reconnection, we imposed the Z component of the external

electric field around (X,Y ) = (0,±3). The maximum amplitude is 0.3VA/c, where VA
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Run kBTcs/mc2 αi σi

R005 0.05 0.12 1.91
R01 0.1 0.24 3.82
R05 0.5 1.2 19.1
R1 1.0 2.4 38.1
R4 4.0 9.6 152
R8 8.0 19.2 305
R16 16.0 38.4 611

Table 4.1: Initial parameters Tcs, αi, and σi for each run are summarized.

is the typical Aflvén velocity. The electric field is imposed for the duration of ttrig =

10λ/VA ∼ 10 − 15τc, which is much shorter than the total simulation time and the time

before the onset of the magnetic reconnection (Zenitani & Hoshino 2007).

From the pressure balance across the current sheet, we obtain

B2
0

8π
= 2ncsTcs. (4.1.15)

The magnetization parameter of the background plasma (inflow region) σi is then given

by

σi ≡
B2

0

4π(2nbg)mc2γ2
i

= 2
Tcs

mc2

ncs

nbg

. (4.1.16)

Here we assume γi = 1. Since we are interested in the possibility of the relativistic outflow

from the relativistic magnetic reconnection (i.e., σi >> 1), we study the σi dependence

of the outflow velocity by changing the plasma temperature inside the current sheet Tcs.

The number density inside the current sheet and the background plasma temperature are

fixed at ncsγs = 1000 pairs and Tbg = 0.2Tcs in all simulations, respectively. The density

ratio nbg/(ncsγs) is fixed at 0.05 to trigger the fast reconnection. We study the case of

kBTcs/mc2 = (0.05, 0.1, 0.5, 1, 4 , 8, 16), which corresponds to σi = (1.91, 3.82, 19.1,

38.2, 153, 305, 611), and αi = (0.12, 0.24, 1.2, 2.4, 9.6, 19.2, 38.4), respectively. Here we

assume Γ = 4/3. The model and their parameters are summarized in Table 4.1.

The total energy increases with time by 0.28% at t = ttrig since we imposed the

triggering electric fields. It is conserved within the error of 0.3% until the end of the

simulation t = 150τc.
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Figure 4.2: Contour plots of the plasma density n/(2γsncs) (color) and the magnetic field
lines (white curves) for R01 at t/τc = 50, 65, 80 from top to bottom, respectively.
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4.2 Simulation Results

4.2.1 Overview of the Simulation Results

Fig. 4.2 shows the snapshot of a part of the simulation box for R01 at t/τc = 50, 65, 80 from

top to bottom, respectively. The color contours show the plasma density n/(2γsncs), while

the white curves do the magnetic field lines. The magnetization parameter in the inflow

region is ∼ 3.8. At the initial state, magnetic field lines are in +X direction in Y > 0,

and in −X direction in Y < 0. By imposing the triggering electric fields, the background

plasma flows toward the (X,Y ) = (0, 0) with the drift velocity vd = c(E × B)/B2.

The plasma flow results in the onset of the magnetic reconnection. After onset of the

magnetic reconnection, the magnetic field lines reconnect and form X−type region around

(X,Y ) = (0, 0). Particles flowing into the X−point are accelerated by induced electric

fields Ez. Fig. 4.3 shows the −(Ez − B)/B0 at t/τc = 95, where B is the magnetic field

strength. The electric fields are induced around the X point, whose strength is larger

than the local magnetic field strength, Ez > B. The accelerated particles evacuate to

±X directions by deflecting their orbits due to the magnetic fields By and form bipolar

plasma jets. The magnetic fields are swept up in ±X directions and the strong electric

fields are induced by E = −v × B/c.

The structure of the magnetic reconnection is close to the Sweet-Parker type, which

does not have shocks (Zenitani & Hoshino 2007). The maximum outflow velocity vmax '
0.56c is less than the Alfvén velocity of the inflow VA = 0.87c.

4.2.2 Effect of the Thermal Pressure of the Inflow

In Chapter 3, we ignored the effects of the thermal pressure in the inflow region. We

include this effect and derive the condition for the relativistic outflow in this subsection.

By including the thermal energy of the inflow in the energy conservation equation

(3.1.3), we obtain

ρic
2γ2

i βiL (1 + αi + σi) = ρoc
2γ2

oβoδ (1 + αo + σo) , (4.2.1)

The pressure balance condition given by equation (3.0.1) can be rewritten by including

the thermal energy of the inflow as

pN = pi +
B2

i

8π
. (4.2.2)
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Figure 4.3: Color contours show −(Ez − B)/B0 and the white curves show the magnetic
field lines for R01 at t/τc = 80.
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Figure 4.4: Grey curves show the magnetic field lines and color contours show (E + v ×
B/c)z/B0 at t = 80τc for R01. Black rectangular shows the diffusion region.
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By using these equations, the Bernoulli’s theorem given by equation (3.1.6) can be rewrit-

ten as

(1 + αi + σi) γi = (1 + αo + σo) γo. (4.2.3)

where αo is given by

αo =
1

gΓ

(
1

2

Γ

Γ − 1
γ2

i σi + αi

)(
uiL

uoδ

)Γ−1

, (4.2.4)

and σo is given by equation (3.1.14). Here, g is the density ratio between the inflow region

and the neutral point defined in equation (3.3.1).

By taking approximations of αi, σi >> 1, (δ/L)2 << 1, γi ' 1, and uo ' γo, we

obtain

uo ' g2

√(
αi + σi

αi + 2σi

)3
δ

L

1

βi

. (4.2.5)

When αi = 0, equation (4.2.5) reduces to equation (3.2.3). The condition for the rela-

tivistic outflow from the magnetic reconnection is given by

βi <<
δ

L

(
αi + σi

αi + 2σi

)3

∼ δ

L
. (4.2.6)

4.2.3 Comparison between the Simulation Results and MHD
Analysis

Before comparing the results between each run, we define the size of the current sheet,

e.g., L and δ. Color contours in Fig. 4.4 shows (E + v × B/c)/B0 and curves show the

magnetic field lines. MHD condition is violated around the X-point. The shape of the

diffusion region is almost rectangular. We approximate the diffusion region as a rectangle

(i.e., shown in Fig. 4.4). The size of the diffusion region L and δ are then determined.

We should determine the time to compare each run since we could not manipulate

the time at which magnetic reconnection takes place. For this purpose, we specify the

points where By(x, y = 0) is maximum or minimum at Y = 0. The referenced time

is determined when the length between these two points is 30λ. Fig. 4.5 shows the

distribution of By(x, y = 0) at t = 80τc for R01.

Fig. 4.6 shows the σi dependence of the maximum outflow four velocity (crosses) and

Alfvén four velocity of the inflow (diamonds). The outflow four velocity is averaged

over |Y |/λ ≤ 0.3 and the time is determined by the above procedure. For a smaller σi

( <∼ a few × 10), the outflow four velocity increases with σi. For a larger σi, the outflow
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Figure 4.5: The distribution of By(x, y = 0) in X direction at t = 80τc for R01.

velocity converges to the saturation value. It is smaller than the Alfvén velocity. The

difference between the two velocities is larger for the larger σi but it converges to the

certain value.

Fig. 4.7 shows the σi dependence of the maximum inflow velocity βi (crosses), the

aspect ratio of the diffusion region (triangles), and βiL/δ (diamonds). The condition for

the relativistic outflow from the magnetic reconnection is given by equation (4.2.6) which

reduces to βi << δ/L in our simulations. In our simulations, the maximum inflow velocity

and the aspect ratio are vi ∼ 0.2 − 0.7c, and L/δ ∼ 2 − 8, respectively. They increase

with σi. Since the condition βi ¿ δ/L is not satisfied, the outflow velocity is only mildly

relativistic as predicted from the MHD analysis.

Next, we estimate the thermal enthalpy inside the current sheet. The simple method

to estimate the thermal energy is to compare the energy momentum tensor

T µν =

∫
d3p

ε
pµpνf(x, p), (4.2.7)

where f is the particle distribution function. We take an average and normalize it by

the rest mass energy inside the current sheet as
∫

d3x T µν/
∫

d3xd3p f . Fig. 4.8 shows

the σi dependence of the diagonal terms of the normalized energy momentum tensor, Txx

(crosses), Tyy (diamonds), and Tzz (triangle) for electrons. Off diagonal terms can be
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Figure 4.6: σi dependence of the outflow
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Figure 4.7: σi dependence of the maximum
inflow velocity in unit of c (crosses), aspect
ratio of the current sheet (triangles), and
βiL/δ (diamonds).

ignored compared to the diagonal terms. Inside the current sheet, Tzz dominates other

terms. All the diagonal terms linearly increase with σi. This indicates that the thermal

energy increases with σi as predicted by the MHD theory.

Note that the pressure tensor given in equation (4.2.7) is evaluated in the observer

frame. For larger σi, the plasma speed inside the current sheet vz becomes larger since

4π(2nevz)/c ∼ (∇ × Bz), and we may overestimate the enthalpy. We thus perform the

Lorentz transformation T ′µν = Λµ
αΛν

βTαβ, where Λα
β is the transformation matrix in Z

direction. To determine the transformation matrix, we calculate the average velocity vz

inside the current sheet. Squares in Fig. 4.8 show T ′
zz for electrons normalized by the rest

mass energy inside the current sheet. Other diagonal terms do not change significantly

since we perform the Lorentz transformation in the Z direction. The off-diagonal terms

can be ignored compared to the diagonal terms.

Since we performed the Lorentz transformation only in the Z direction, Txx is slightly

larger than T ′
zz in the comoving frame, but the ZZ component is still dominant. T ′

zz

increases with σi, consistent with the result of the MHD analysis.

Note that T ′
zz is larger than unity at σi ∼ 20. It coincides with σi where the outflow

velocity converges to the saturation value. It can be explained by that the outflow cannot

be accelerated due to the increase of the enthalpy predicted by the MHD analysis by

Lyubarsky (2005) and by ourselves.
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Figure 4.8: σi dependence of the diagonal term of the normalized energy momentum ten-
sor, Txx (crosses), Tyy (diamonds), and Tzz (triangles). Squares show the ZZ component
of the energy momentum tensor in the comoving frame T ′

zz. Solid curve shows the relation
T µν ∝ σi.

4.3 Summary & Discussions

We performed 2-dimensional PIC simulations of relativistic magnetic reconnection to

study the possibility of the relativistic outflow.

For smaller σi, the outflow velocity increases with σi, and it converges a certain value

below the Alfvén velocity for larger σi. The plasma enthalpy linearly increases with σi,

and exceeds unity when σi
>∼ 20. These results are consistent with those from the MHD

analysis. The saturation of the outflow velocity can be explained by the increase in the

enthalpy.

We showed from the MHD analysis that the inflow velocity as ∼ δ/L, and we showed

that the inflow velocity cδ/L given by Lyubarsky (2005) is the maximum of the flow

velocity. In our simulation, the inflow velocity is slightly larger than cδ/L. This is

because we observed the maximum inflow velocity. When we measure the inflow velocity

by taking an average, the obtained inflow velocity will be close to δ/L

In our simulations, the maximum Alfvén four velocity is 3.96 for R16, which is still

only mildly relativistic. This comes from the computational limit. To simulate the case

for faster Alfvén velocity, we need to simulate the case when the thermal energy of the



81 4.3. SUMMARY & DISCUSSIONS

inflow is small, Tbg ¿ Tcs. Such a simulation is hard since the Debye length in the inflow

region is too small to be resolved.



Chapter 5

Summary and Discussions

In this chapter, we summarize our results and discuss the particle acceleration in expand-

ing magnetic loops. In § 5.1, we summarize the self-similar solutions of the expanding

magnetic loops. The possibility of the relativistic outflow from the magnetic reconnection

will be discussed in § 5.2. We discuss the particle acceleration in expanding magnetic

loops in § 5.3

5.1 Conclusion of the Self-similar Solutions

In chapter 2, we obtained self-similar solutions of relativistically expanding magnetic loops

by extending the non-relativistic solutions obtained by Low (1982). We ignored the stellar

rotation and assumed axisymmetry and the purely radial flow.

The self-similar parameter is given by η = r/t and the radial velocity can be expressed

as vr = η. Since the time derivative of the velocity is zero, i.e., Dv/Dt = 0, our solutions

describe the freely expanding magnetic loops in which we can choose a reference frame

where all forces balance.

We found that a shell structure is formed inside the magnetic loops where the pressure

and density pulses appear. The magnetic flux is swept up into the shell. The pressure

pulse follows the density enhancement. This structure comes from the force balance in

the radial direction. The gravity for the density enhancement balances with the pressure

gradient force. Behind the pressure pulse, the density decreases. The buoyancy force

driven by the density decrease balances with the pressure gradient. The pressure pulse

structure is thus maintained by the gravity and the buoyancy forces. The amplitudes of

the pressure and density enhancements inside the shell are larger for a thinner shell.

For the relativistic expansion, the effects of the displacement current cannot be ig-
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nored. Since the displacement current is larger for a faster expansion, this term domi-

nates to ∇× B/(4π) for a faster expansion. We found that the displacement current is

dominant when γ >∼ 2.4 for the dipolar solution, while it depends on the expansion speed

and the shell structure for the shell and flux rope solutions. The displacement current

reduces the magnetic tension force and changes the distribution of the plasma.

Inside the magnetic loops, a current sheet is formed. The magnetic reconnection may

release the magnetic energy which is responsible for the giant flares (Lyutikov 2006).

The toroidal magnetic fields can be represented by the superposition of the Fourier

modes in the polar angle θ. These modes should be determined by the position where

magnetic twists are injected on the surface of the star when the crustal motion triggers

the expansion. In general, we can construct more complex solutions that the poloidal

magnetic field can be expressed as the superposition of the Fourier modes. Since the

opening angle of the magnetic loops depends on the boundary at the surface of the star,

the actual explosion can be represented as the superposition of the Fourier modes in both

directions (i.e., the spherical harmonic function Y m
l ).

We derived the solutions of the freely expanding magnetic loops. How can we derive

the solutions which describe the accelerating phase? We assumed that the magnetic flux

Ã depends on the radial distance and the time through the self-similar variable, i.e.,

Ã(t, r, θ) = Ã(η, θ). Since the time derivative of the self-similar variable is zero, the

magnetic flux is conserved, i.e., DÃ/Dt = 0. This means that the magnetic twist, and

thus, the twist energy cannot be injected from the footpoints of the magnetic loops during

this stage. To construct the solutions describing the accelerating stage, we need to relax

this condition. It is left as the future work.

In our treatment, we do not consider the interaction between the expanding magnetic

loops and the interstellar matter. When the magnetic loops expand, a fast shock is formed.

We also need to include this effect in future work.

5.2 Conclusion of the Relativistic Outflow from the

Relativistic Magnetic Reconnection

In chapter 3, we extended the Sweet-Parker magnetic reconnection to the relativistic

plasma. We assumed that the plasma velocity, the plasma density, the plasma pressure,

and the magnetic fields in the inflow and outflow regions are uniform and ignored the

radiative effects. We adopted the energy, mass, and magnetic flux conservation equa-
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tions between the inflow and the outflow. To close the system, we used the entropy

conservation equation instead of using the momentum conservation equation. Although

the momentum conservation equation degenerates to the energy conservation equation

for the ultra-relativistic speed, the entropy conservation never degenerates to the other

equations. By using the entropy conservation equation, we can readily include the effects

that inertia decreases due to the expansion which were not included in previous works.

As the results, we found that the outflow velocity increases with σi for the sub rela-

tivistic case, i.e., (σi
<∼ 1). For the strongly magnetized plasma σi >> 1, since the thermal

energy density exceeds the rest mass energy density, the outflow velocity saturates and

the magnetic energy is not used for further acceleration but for the further heating. The

saturated velocity depends on both the aspect ratio and the inflow velocity (reconnection

rate) as uo ∼ (βiL/δ)−1/2. This result indicates that the outflow speed becomes slower for

a larger reconnection rate. Since the heating rate is proportional to the reconnection rate,

the plasma inertia increases with the reconnection rate because enthalpy increases. The

outflow velocity is then slower for a larger reconnection rate when σi
>∼ 1. The maximum

inflow velocity can be estimated as βi,max ∼ δ/L. When βi ∼ βi,max, our solutions coincide

with those by Lyubarsky (2005).

When the inflow velocity is much smaller than βi,max, the outflow speed can be

ultra-relativistic (γo ∼ σi). Although Lyutikov & Uzdensky (2003) also obtained ultra-

relativistic outflow from relativistic magnetic reconnections, our solutions are completely

different from theirs. They obtained the faster outflow and the larger reconnection rate

because they ignored the thermal energy. However, the thermal energy cannot be ignored

for the larger reconnection rate as mentioned above when σi
>∼ 1. The outflow can be

ultra-relativistic only when the reconnection rate is extremely small for the relativistic

magnetic reconnection.

In § 4, we studied the σi dependence of the reconnection outflow speed by 2-dimensional

PIC simulations. We found that the outflow velocity is smaller than the Alfvén velocity

of the inflow. We also found that the plasma pressure linearly increases with σi without

saturation. These results are qualitatively consistent with those by the MHD analysis.

The inflow velocity is about 0.2 − 0.7c ∼ cδ/L. Thus the condition of the relativistic

outflow βi << βi,max ∼ δ/L is not satisfied. These results support the results of MHD

analysis by Lyubarsky (2005) and by authors.

Since the magnetic reconnection can efficiently convert the magnetic energy into the

plasma energy, it is expected that the relativistic magnetic reconnection can power the
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jets observed in active galactic nuclei and in galactic microquasars, (see, e.g., Meier et al.

2001) and the explosion in GRBs (see, e.g., Drenkhahn 2002). Our results, however,

indicate that the outflow from the magnetic reconnection is only mildly relativistic. Most

of the magnetic energy is used for heating the plasma. The thermal energy density of

the outflow is larger than that of the rest mass. Is it possible to use the large amount

of the thermal energy for further acceleration? The slower outflow from the magnetic

reconnection is due to the increase of the enthalpy. When the outflow produced by

the magnetic reconnection spreads into a fan, the plasma enthalpy decreases due to the

expansion. Swisdak et al. (2008) and Zenitani & Hesse (2008b) performed 2-dimensional

PIC simulations and showed that Weibel instability develops in the outflow region. Since

the generated magnetic field deflects particle orbits, the enthalpy decreases because the

outflow expands. We need to perform simulations in larger scales to confirm whether such

an acceleration is possible.

Another possible mechanism to produce the relativistic outflow is the radiation effects.

In our analysis, we do not include these effects. For a larger σi, a synchrotron radiation

is the main source to cool the plasma. The plasma energy is then extracted by the

radiation, leading to the decrease in the enthalpy. Pair creations in the diffusion region can

also enable the rapid outflow. Since the pair creation is endoergic, the plasma enthalpy

decreases. We need to include these radiation processes carefully to study the plasma

acceleration.

We have to point out that our discussion on the magnetic reconnection is restricted

to the Sweet-Parker type magnetic reconnection. Petschek type magnetic reconnection,

which includes slow shocks stemming from the diffusion region, can liberate more magnetic

energy. Lyubarsky (2005) showed that the outflow speed is accelerated up to the Alfvén

velocity of the inflow γo ∼
√

σi. Watanabe & Yokoyama (2006) performed 2-dimensional

relativistic resistive MHD simulations and recovered the solution by Lyubarsky (2005).

Shock structures did not appear in their PIC simulation, because the PIC simulation is

concentrated on the small scale around the diffusion region. We need further study to

judge whether the relativistic outflow is produced by the magnetic reconnection.



86 CHAPTER 5. SUMMARY AND DISCUSSIONS
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Figure 5.1: Schematic picture of the expanding magnetic loops. Fast shock is formed
ahead of the loop top and current sheet is created inside the magnetic loops. Behind
the loop top, tangential discontinuity is formed. These sites can be responsible for the
particle acceleration.

5.3 Discussion of the Particle Acceleration in Ex-

panding Magnetic Loops

Finally, we would like to discuss the acceleration mechanism associated with the expanding

magnetic loops. Since spectrum of the SGR giant flares can be fitted with the power-

law (Palmer et al. 2005), nonthermal particles are generated. The observed energy of

the gamma-rays exceeds 10 MeV. The corresponding Lorentz factor of the electron is

∼ 100 when we assumed that the electrons radiate through the synchrotron process and

that mean magnetic field strength is ∼ 1012 G. When the magnetic loops emerging on

the magnetar expand, a first shock is formed in front of the magnetic loops. Inside

the magnetic loops, a current sheet is formed. The magnetic energy is released by the

magnetic reconnection. First, particles are accelerated through the electric field by the

magnetic reconnection. When slow shocks form, particles can be accelerated by the Fermi

or other microscopic processes. At the loop top, a tangential discontinuity is formed where

the direction of the magnetic field changes significantly. The toroidal magnetic field is

dominant behind the discontinuity, while the poloidal magnetic field is dominant ahead

of the discontinuity. The resulting electric field E = −v × B/c also change its direction.

Particles can be reflected by the electric field and gain energy. These accelerated particles

can be further accelerated at the fast shock again. High energy particles can be generated
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through the multiple acceleration. If particles gain energy efficiently at each acceleration

site, SGRs can be the source of the ultra-high energy cosmic rays, since the potential

energy of the magnetar exceeds 1020 eV.



Appendix A

Relativistic Magnetohydrodynamics

In this appendix, the special relativistic MHD equations are derived and the properties

of the relativistic MHD are reviewed. We take c = 1 for simplicity.

A.1 Derivation of the Relativistic MHD Equations

In the framework of the magnetohydrodynamics, electrons and ions have the same velocity,

the density profile, and the temperature (1 fluid approximation). Since the electrons and

ions move together, the electric fields in the comoving frame always vanish, i.e., E′ = 0

(dash denotes the comoving frame). By carrying out the Lorentz transformation, this

condition in the observer frame moving with the velocity v is written as

E + v × B = 0. (A.1.1)

We assume that distribution functions of electrons and ions in the comoving frame are

maxwellian. We also assume that they obeys the same equation of states with the specific

heat ratio of Γ. Then the energy momentum tensor of the plasma is described as

T µν
M = ρξuµuν − pgµν , (A.1.2)

where ρ, p, uµ are the gas proper density, the gas proper pressure, and the bulk four

velocity uµ = (γ, γvi), respectively. Greek indices indicate four vectors (µ, ν = 0, 1, 2, 3),

while Latin indices do the three vector (i, j = 1, 2, 3). gµν = diag (1,−1,−1,−1) is the

metric tensor (assuming a flat spacetime and Cartesian space coordinates) and ξ is the

relativistic specific enthalpy;

ξ = 1 +
Γ

Γ − 1

p

ρ
. (A.1.3)
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The energy momentum tensor of the electromagnetic fields is written as

T µν
em =

1

4π

(
−F µαF ν

α +
1

4
gµνFαβFαβ

)
=

(
Uem Si

Si σij

)
. (A.1.4)

where F µν , Uem, Si and σij are the electromagnetc field tensor, the electromagnetc energy

density, Poynting flux and the Maxwell stress tensor as

F µν = ∂µAν − ∂νAµ, (A.1.5)

Uem =
E2 + B2

8π
, (A.1.6)

Si =

(
E × B

4π

)i

, (A.1.7)

and

σij = − 1

4π

[
EiEj + BiBj − δij

2

(
E2 + B2

)]
. (A.1.8)

Here Aµ and δij are the vector potential in the comoving frame Aµ = (φ,Ai) and the

Kronecker delta, respectively. By taking the divergence of the total energy momentum

tensor T µν = T µν
M + T µν

em, we obtain four equations

∂

∂t

[
ρξγ2 − p + Uem

]
+

∂

∂xj

[
ρξγ2vj + Sj

]
= 0, (A.1.9)

∂

∂t

[
ρξγ2vi + Si

]
+

∂

∂xj

[
ρξγ2vivj + pδij + σij

]
= 0. (A.1.10)

The mass conservation equation can be written as

∂(ργ)

∂t
+

∂(ργvi)

∂xi
= 0. (A.1.11)

The Maxwell equations are

∇ · B = 0, (A.1.12)

∇ · E = 4πρe, (A.1.13)

∂B

∂t
= −∇× E, (A.1.14)

and
∂E

∂t
= ∇× B − 4πj, (A.1.15)

where ρe and j are the charge density and the charge current, respectively. Since equations

(A.1.12) and (A.1.13) give conditions of constraint (divergence-free conditions), equations

(A.1.1), (A.1.9), (A.1.10), (A.1.11), and (A.1.14) give the full set of the relativistic MHD
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equations. Equation (A.1.15) is not needed to close the system in ideal MHD. When we

take into account the magnetic diffusivity, equation (A.1.1) is not satisfied and we need

to solve equation (A.1.15). Another equation is needed to close the system, namely the

Ohm’s law which relates the electric field and the charge current E = E(j) (see, e.g.,

Blackman & Field 1993).

From equations (A.1.14) and (A.1.15), we obtain

∂Uem

∂t
+

∂Sj

∂xj
= −Ejjj, (A.1.16)

and

∂Si

∂t
+

∂σij

∂xj
= −ρeE

i − (j × B)i. (A.1.17)

By substituting equations (A.1.16) and (A.1.17) into equation (A.1.9) and (A.1.10), we

obtain

∂

∂t

(
ρξγ2 − p

)
+

∂

∂xj

(
ρξγ2βj

)
= jjEj, (A.1.18)

∂

∂t

(
ρξγ2βi

)
+

∂

∂xj

(
ρξγ2βiβj + pδij

)
= ρeE

i + (j × B)i, (A.1.19)

The right hand side of equation (A.1.18) denotes the Ohmic heating and that in equation

(A.1.19) denote the electromagnetic force. By using equation (A.1.11), equation (A.1.19)

can be written as

ργ

[
∂

∂t
+ (v · ∇)

]
(ξγv) = ρeE + j × B −∇p. (A.1.20)

This is the equation of motion in special relativistic MHD. Equation (A.1.20) reduces to

that of the non-relativistic MHD by taking ξ = 1 and (v/c)2 = 0. Note that the pressure

term contributes to the inertia. The plasma inertia is larger for a larger thermal energy

when the thermal energy density dominates to that of rest mass.

When the plasma inertia and the gas pressure can be ignored (force-free approxima-

tion), equation (A.1.20) is reduced to

E + j × B = 0. (A.1.21)

The equations (A.1.14), (A.1.15) and (A.1.21) give us the force-free equations. Equation

(A.1.21) corresponds to the Ohm’s law for the relativistic force-free dynamics (Lyutikov

2003).
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A.2 Derivation of the Gas Energy Equation

In the previous section, the full set of the relativistic MHD equations are derived. The

derivation of the energy conservation is implicitly assumed that the entropy is conserved.

The energy, momentum and entropy conservation equations are not independent. In

this section, we derive the entropy conservation equation from the energy momentum

conservation equations. We consider the purely hydrodynamics (without magnetic field)

for simplicity. The procedure below is following to Mihalas & Mihalas (1984).

From the energy momentum conservation, i.e., T µν
,ν = 0, we obtain

uµ(ρξuµuν),ν − uµp,µ = 0, (A.2.1)

Because uµuµ = 1, equation (A.2.1) can be written as

(ρξuµ),µ − uµp,µ = 0. (A.2.2)

By subtracting ξ times continuity equation (A.1.11), we obtain

ρuµ

(
ε,µ − p

ρ2
ρ,µ

)
= 0, (A.2.3)

where ε is the specific internal energy. Using the expression of uµ∂µ ≡ D/Dτ , where τ is

the proper time, we obtain
Dε

Dτ
+ p

D

Dτ

(
1

ρ

)
= 0, (A.2.4)

as the relativistic generalization of the gas energy equation for an deal gas (second law of

the thermodynamics). Thus the entropy is conserved when the momentum and energies

are conserved for the ideal fluids.

A.3 Waves in Relativistic Fluids

In relativistic MHD, there are 7 independent equations and thus there are 7 waves prop-

agating in the magnetized fluids. These waves are named as fast waves, Alfvén waves,

slow waves and entropy wave. When the magnetic field is always vanished, fast, slow and

Alfvén waves disappear.

In this subsection, we derive the dispersion relation of the sound and Alfvén waves.

The subscript 0 and 1 denote the zeroth (equilibrium part) and first order (perturbation

part) of the variables, respectively. The quadratic of the perturbation part is assumed to

be negligible.



92 APPENDIX A. RELATIVISTIC MAGNETOHYDRODYNAMICS

A.3.1 Sound Wave

Consider non-magnetized fluids without bulk velocity (v0 = 0). The energy momentum

tensor is given by equation (A.1.2). Energy conservation equation can be written as

∂e1

∂t
+ (e0 + p0)∇ · v1 = 0, (A.3.1)

and momentum conservation equation can be written as

(e0 + p0)
∂v1

∂t
+ ∇p1 = 0. (A.3.2)

Here we ignore the quadratic terms of the perturbations. Combining these equations, we

obtain
∂2e1

∂t2
−∇2p = 0. (A.3.3)

Thus the phase velocity (= the group velocity for the sound wave) of the sound wave cs

is given by

cs =

√
∂p

∂e
. (A.3.4)

The equation of state for the ultra-relativistic gas is given by p = e/3 and sound speed is

cs = 1/
√

3.

A.3.2 Alfvén Wave

Let us consider the wave propagation in X-direction. We assume the uniform and static

field in zeroth order and that the magnetic field assumed to be uniform in X-direction.

We also assume v0 = 0 and k · v1 = 0, where k is the wave number.

From the Faraday’s law (A.1.14) and (A.1.1), we obtain

ωB1 + kB0v1 = 0. (A.3.5)

From the equation of motion (A.1.20), we obtain

ρ0ξ0ωv1 = kp1
k

k
− kB0

4π
B1 −

ωB2
0

4π
v1. (A.3.6)

By taking inner product with k, we obtain p = 0. By substituting equations (A.3.5) and

p = 0 into equation (A.3.6), we obtain the Alfvén velocity vA as

v2
A ≡

(ω

k

)2

=
B2

0/4π

ρ0ξ0 + B2
0/4π

. (A.3.7)
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Note that the denominator of the right hand side of equation (A.3.7) includes not only the

rest mass density, but also the thermal and magnetic energy densities which is interpreted

as the enthalpy. In the non-relativistic limit, this term reduces to the rest mass energy

density. While the sound speed is limited about 58% of the light speed, the Alfvén speed

approaches the light speed for larger magnetic fields. When the plasma inertia and the

gas pressure can be ignored (force-free approximation), the phase velocity of the Alfvén

wave approaches the light speed. In force-free dynamics, only fast and sound waves can

propagate with the light speed.



Appendix B

Self-similar Solutions

In this appendix, we explicitly show the self-similar solutions of the shell and flux rope

solutions. The procedure of deriving solutions are mentioned in

B.1 Construction of the Shell Solutions

The functions Q and P in region I are given by

QI(η, θ) =
∑

n

Q0,n

1 − η2
sinn θ, (B.1.1)

P I(η, θ) = P0(η) + P I
A(η, θ) + P I

Q(η, θ), (B.1.2)

where P I
A and P I

Q are given by

P I
A(η, θ) =

A2
0a

4

2πη4
sin2 θ, (B.1.3)

P I
Q(η, θ) =


−

∑
m+n6=2

nQ0,mQ0,n

4π(m + n − 2)η2(1 − η2)
sinm+n−2θ, for m + n 6= 2,

−
∑

m+n=2

nQ0,mQ0,m

4πη2(1 − η2)
log(sin θ), for m + n = 2.

(B.1.4)

The function D in region I is given by

DI(η, θ) = D0(η) + DI
A(η, θ) + DI

Q(η, θ), (B.1.5)

where DI
A and DI

Q are given by

DI
A(η, θ) =

2A2
0a

4

πGMη3(1 − η2)
sin2 θ, (B.1.6)
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DI
Q(η, θ) =


−

∑
m+n6=2

nQ0,mQ0,n

2πGM(m + n − 2)η(1 − η2)2
sinm+n−2 θ, for m + n 6= 2,

−
∑

m+n=2

nQ0,mQ0,m

2πGMη(1 − η2)2
log(sin θ), for m + n = 2.

(B.1.7)

The functions Q and P in region II are given by

QII(η, θ) =
∑

n

Q0,n

1 − η2
Λ

n
2 (η) sinn θ, (B.1.8)

P II(η, θ) = P0(η) + P II
A (η, θ) + P II

Q (η, θ), (B.1.9)

where P II
A and P II

Q are given by

P II
A (η, θ) =

A2
0a

4

2πη4
Λ(η)

{
1 − sin2 T (η)

sin4 T (a)
Ψ(η)

}
sin2 θ, (B.1.10)

P II
Q (η, θ) =


−

∑
m+n6=2

nQ0,mQ0,nΛ
(m+n)

2 (η)

4π(m + n − 2)η2(1 − η2)
sinm+n−2 θ, for m + n 6= 2,

−
∑

m+n=2

nQ0,mQ0,nΛ(η)

4πη2(1 − η2)
log(sin θ), for m + n = 2.

(B.1.11)

Here Ψ(η) is a function of η defined as

Ψ(η) =
[
sin2 T (η) + 4kη3 sin T (η) cos T (η) − 2k2η2(1 − η2)

(
3 − 4 sin2 T (η)

)]
. (B.1.12)

The function DII is given by

DII(η, θ) = D0(η) + DII
A (η, θ) + DII

Q (η, θ), (B.1.13)

where DII
A and DII

Q are given by

DII
A (η, θ) =

2A2
0a

4

πGMη3(1 − η2)
Λ(η)

[
1 − sin4 T (η)

sin4 T (a)
Ξ(η)

]
sin2 θ, (B.1.14)

DII
Q (η, θ) =



−
∑

m+n6=2

nQ0,mQ0,nΛ
m+n−2

2 (η)

2πGM(m + n − 2)η(1 − η2)2{
1 − sin4 T (η)

sin4 T (a)

[
1 − 2kη(1 − η2) cot T (η)

]}
sinm+n−2 θ,

for m + n 6= 2,

−
∑

m+n=2

nQ0,mQ0,n

2πGMη(1 − η2)2{
log(sin θ) − sin4 T (η)

sin4 T (a)

[
log(sin θ) + kη(1 − η2) cot T (η)(1 − 2 log(sin θ))

]}
,

for m + n = 2.
(B.1.15)
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Here Ξ(η) is a function of η given by

Ξ(η) = 1 − kη(1 + η2)(1 − 3η2) cot T (η)

+ k2η2(1 − η2)(1 + 3η2)
[
1 − 3 cot2 T (η)

]
+ k3η3(1 − η2)2

[
3 cot3 T (η) − 5 cot T (η)

]
. (B.1.16)

P0(η) is an arbitrary function of η and is related to the function D0(η) through equation

(2.2.12).

B.2 Construction of the Flux Rope Solutions

The function P in region I is given by

P I(η, θ) = P0(η) + P I
A(η, θ) + P I

Q(η, θ), (B.2.1)

where P I
A and P I

Q are

P I
A(η, θ) =

A2
0a

4

4πη4

2 − 3η2

(1 − η2)2
sin2 θ, (B.2.2)

P I
Q(η, θ) =


−

∑
m+n6=2

nQ0,mQ0,n

4π(m + n − 2)

sinm+n−2 θ

η2(1 − η2)1+(m+n)/4
, for m + n 6= 2,

−
∑

m+n=2

nQ0,mQ0,n

4π

log(sin θ)

η2(1 − η2)
3
2

, for m + n = 2.

(B.2.3)

The function D in region I is given by

DI(η, θ) = D0(η) + DI
A(η, θ) + DI

Q(η, θ), (B.2.4)

where DI
A and DI

Q are

DI
A(η, θ) =

A2
0a

4

4πGMη3

8 − 12η2 + 3η4

(1 − η2)3
sin2 θ, (B.2.5)

DI
Q(η, θ) =


−

∑
m+n6=2

nQ0,mQ0,n

4πGM(m + n − 2)

2 − η2

η(1 − η2)2+(m+n)/4
sinm+n−2 θ, for m + n 6= 2,

−
∑

m+n=2

nQ0,mQ0,n

8πGM

η2 + 2(2 − η2) log(sin θ)

η(1 − η2)
5
2

, for m + n = 2.

(B.2.6)

The function P in region II is described as

P II(η, θ) = P0(η) + P II
A (η, θ) + P II

Q (η, θ), (B.2.7)
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where P II
A and P II

Q are

P II
A =

A2
0a

4

4πη4
Λ(η)

[
2 − 3η2

(1 − η2)2
Λ(η) + 4k2η2 sin2 T (η)(3 − 4 sin2 T (η))

sin4 T (a)

]
sin2 θ, (B.2.8)

P II
Q (η, θ) =


−

∑
m+n6=2

nQ0,mQ0,n

4π(m + n − 2)

Λ
m+n

2 (η)

η2(1 − η2)1+(m+n)/4
sinm+n−2 θ, for m + n 6= 2,

−
∑

m+n=2

nQ0,mQ0,n

4π

Λ(η)

η2(1 − η2)
3
2

log(sin θ), for m + n = 2.

(B.2.9)

The function D is given by

DII(η, θ) = D0(η) + DII
A (η, θ) + DII

Q (η, θ), (B.2.10)

where DII
A and DII

Q are

DII
A (η, θ) =

A2
0a

4

4πGMη3
Λ(η) [d0(η) + d1(η) + d2(η) + d3(η)] sin2 θ, (B.2.11)

DII
Q (η, θ) = −

∑
m,n

nQ0,mQ0,m

4πGMη(1 − η2)2+ m+n
4

Y (η, θ). (B.2.12)

The functions d0, d1, d2, d3, and Y are given by

d0(η) =
3η4 − 12η2 + 8

(1 − η2)3
Λ(η), (B.2.13)

d1(η) =
4kη(2 − 3η2)

(1 − η2)2

sin3 T (η) cos T (η)

sin4 T (a)
, (B.2.14)

d2(η) =
4k2η2(2 + 3η2)

1 − η2

sin2 T (η)(3 − 4 sin2 T (η))

sin4 T (a)
, (B.2.15)

d3(η) = −8k3η3 sin T (η) cos T (η)(3 − 8 sin2 T (η))

sin4 T (a)
, (B.2.16)

Y (η, θ) =



Λ
m+n−2

2 (η)

m + n − 2

[
(2 − η2)Λ(η) + 4kη(1 − η2)

sin3 T (η) cos T (η)

sin4 T (a)

]
sinm+n−2 θ,

for m + n 6= 2,
1

2

[
η2 + 2(2 − η2) log(sin θ)

]
Λ(η)

+2kη(1 − η2)(−1 + 2 log(sin θ))
sin3 T (η) cos T (η)

sin4 T (a)
,

for m + n = 2.
(B.2.17)

The functions P0 and D0 are related each other through equation (2.2.12).



Appendix C

Wave Propagation with the Moving
boundary in Vacuum

C.1 Electromagnetic Pulse Propagation

In chapter 2, the relativistic self-similar solutions in r <= R(t) are derived. These solutions

indicate that for the shell and flux rope solutions, the electromagnetic pulse is emitted

from the loop top at r = R(t) unless the condition (2.2.32) is satisfied. Electromagnetic

pulse is also emitted in dipolar solutions. In this section, we study the propagation of

the electromagnetic pulse in the vacuum (r > R(t), region III) by imposing the boundary

conditions at r = R(t).

The Maxwell equations in vacuum are

∂B

∂t
+ ∇× E = 0, (C.1.1)

∂E

∂t
= ∇× B. (C.1.2)

In the radiation gauge, the electromagnetic fields are represented in terms of the vector

potential A as

E = −∂A

∂t
, (C.1.3)

B = ∇× A. (C.1.4)

The Maxwell equations reduce to the following equation

∂2A

∂t2
+ ∇× (∇× A) = 0. (C.1.5)

The boundary conditions at r = R(t) are given as[
T

′ir
M + T

′ir
EM

]
= 0, (C.1.6)
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[E′
⊥] = 0, (C.1.7)[

B′
‖
]

= 0, (C.1.8)

where T
′ij
M and T

′ij
EM denote the space-space components of energy momentum tensor for

the matter and electromagnetic fields, respectively. The brackets [ ] denote the jump

across the boundary r = R(t). The subscript ⊥ or ‖ denotes the field component perpen-

dicular/parallel to the velocity, and the prime denotes the variables defined in the rest

frame.

Let us assume that

P0(η = a) = D0(η = a) = 0. (C.1.9)

where P0(η) and D0(η) are arbitrary functions related by equation (2.2.12). By using

these conditions, the jump condition (C.1.6) can be written as

[σ′rr] = 0, (C.1.10)

where σij is the Maxwell stress tensor. Let us assume further that the toroidal magnetic

field vanishes in the region where r > R(t) (region III). The electromagnetic field in

r > R(t) can be expressed by a scalar function ÃV as

A =
ÃV

r sin θ
eφ, (C.1.11)

E =
1

r sin θ

(
0, 0,−∂ÃV

∂t

)
, (C.1.12)

B =
1

r sin θ

(
1

r

∂ÃV

∂θ
,−∂ÃV

∂r
, 0

)
. (C.1.13)

By carrying out the Lorentz transformation for the electromagnetic fields given by (2.1.8),

(2.1.10), (C.1.12) and (C.1.13), the electromagnetic fields in the rest frame are given as

E′ =


0, (r <= R(t)),

− γ

r sin θ

(
∂ÃV

∂t
+ v

∂ÃV

∂r

)
eφ, (r > R(t)),

(C.1.14)

B′ =


1

r sin θ

[
1

r

∂Ã

∂θ
,−1

γ

∂Ã

∂r
,
B

γ

]
, (r <= R(t)),

1

r sin θ

[
1

r

∂ÃV

∂θ
,−γ

(
∂ÃV

∂r
+ v

∂ÃV

∂t

)
, 0

]
, (r > R(t)).

(C.1.15)
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By substituting equations (C.1.14) and (C.1.15) into (C.1.7), (C.1.8), and (C.1.10), the

boundary conditions for the scalar function ÃV can be obtained as

∂ÃV

∂t
+ v

∂ÃV

∂r

∣∣∣∣∣
r=R(t)

= 0, (C.1.16)

∂ÃV

∂θ

∣∣∣∣∣
r=R(t)

= 0, (C.1.17)

∂ÃV

∂r

∣∣∣∣∣
r=R(t)

=


− 2A0a

t
√

1 − a2
sin2 θ, (dipolar solution),

−4A0a
2k cot T (a)

t
sin2 θ, (shell solution),

−4A0a
2k cot T (a)

t
√

1 − a2
sin2 θ, (flux rope solution),

(C.1.18)

By substituting equation (C.1.11) into the Maxwell equations (C.1.5), we obtain

∂2ÃV

∂t2
− L̂(r,θ)ÃV = 0. (C.1.19)

The equation (C.1.19) with the boundary conditions (C.1.16), (C.1.17) and (C.1.18) are

identical to those of the non-relativistic case (Low 1982).

Let us expand the flux function ÃV in a series of t as

ÃV =
∑

µ

tµG(µ; η) sin2 θ, (C.1.20)

where G is a function of η. Substituting equation (C.1.20) into equation (C.1.19), we

obtain

(1 − η2)
d2G

dη2
+ 2(µ − 1)η

dG

dη
−

[
µ(µ − 1) +

2

η2

]
G = 0. (C.1.21)

Here we abbreviate the summation of the series of t. Next, we change variables as

x = η2, (C.1.22)

σ(µ; η) = ηG. (C.1.23)

Substituting equations (C.1.22) and (C.1.23) into equation (C.1.21), we obtain

x(1 − x)
d2σ

dx2
+

[
−1

2
− x

2
(1 − 2µ)

]
dσ

dx
− µ(µ + 1)

4
σ = 0. (C.1.24)

This differential equation can be recognized to be that for the Gauss Hypergeometric

function F (α, β, γ; x).
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Then ÃV can be written as

ÃV =
∑

µ

tµ

η
s0(µ)F

(
−µ

2
,−µ + 1

2
,−1

2
; η2

)
+ s1(µ)η3F

(
3 − µ

2
,
2 − µ

2
,
5

2
; η2

)
, (C.1.25)

where s0 and s1 are constants of integral. Substituting equation (C.1.20) into equation

(C.1.18), we obtain µ = 0. Then equation (C.1.25) is reduced to

ÃV =

{
s0

η
+

s1

η

[
η − 1

2
ln

1 + η

1 − η

]}
sin2 θ. (C.1.26)

By imposing boundary conditions (C.1.16), (C.1.17) and (C.1.18), we obtain

s0 = −2A0

√
1 − a2

[
a − 1

2
ln

1 + a

1 − a

]
, (C.1.27)

s1 = 2A0

√
1 − a2, (C.1.28)

and thus we obtain

ÃV = 2A0

√
1 − a2

[
1 − a

η
+

1

2η
ln

1 − η

1 + η

1 + a

1 − a

]
. (C.1.29)

for dipolar solution.

Electromagnetic fields in r > R(t) for the shell and flux rope solutions can be obtained

by replacing A0 with 2A0ak
√

1 − a2 cot T (a) and 2A0ak cot T (a), respectively.

Fig. C.1 shows the profile of the function J(η) (left) and the contours of the magnetic

flux (right) for the dipolar solution with a = 0.7. The infinity in the electromagnetic

field at r = t is originated from the assumption of the self-similarity. Since we assumed

a point source at r = 0, the magnetic field strength becomes infinite as t → 0. In turn,

the electric current diverges as t → 0. This infinite current generates an electromagnetic

pulse at the electromagnetic wave front at r = t. To avoid the infinite magnetic field,

we should replace the boundary conditions at r = R(t) given by (C.1.16), (C.1.17) and

(C.1.18) with those at t = t0, and its radius r = r0 when the self-similar stage starts. It

is out of the scope of this thesis to study the non self-similar stage before t = t0.
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Figure C.1: Left: the profile of the function J(η) for the dipolar solution in the region
η > a with a = 0.7. The dashed line shows the boundary at r = t. Right: contour plots
of the magnetic flux in η − θ plane for the dipolar solution with a = 0.7.



Appendix D

Some Algebra Calculations Used in
the Self-similar Solution

D.1 Derivation of a∗

In this appendix, we derive a∗ given in equation (2.3.22) which is the critical value for

PA > 0. We change the variables a and η into α and x as

α = a2, (D.1.1)

and

x = η2, (D.1.2)

where α and ξ are defined in

0 ≤ x ≤ α ≤ 1. (D.1.3)

By using these variables, equation (2.3.21) can be rewritten as

g(x) = 2x3 − x2 − 3αx + 2α. (D.1.4)

The critical vale a∗ is obtained by solving g(x) = 0 in region (D.1.3). The solution of

dg/dx = 0 is given by

x = x± ≡ 1 ±
√

1 + 18α

6
, (D.1.5)

where the subscript ± coincides with the sign of the term of the square root. The function

g(x) has two extrema, x− is the negative value, while x+ is positive value. Since g(0) =

2α ≥ 0, g(x) has a negative value when g(x+) ≤ 0 and x+ ≤ α in the domain 0 ≤ x ≤
α ≤ 1 (see Fig. D.1).

From the condition that x+ < α, we obtain

α >
5

6
. (D.1.6)
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SOLUTION

x- x+

2a

g(x)

a0

Figure D.1: Profile of the function g(x). g(x) can be negative at x = x+. The function
g(x) has a negative value when x+ < α and g(x+) ≤ 0.

and from the equation that g(x+) = 0, we obtain

α± =
69 ± 11

√
33

144
. (D.1.7)

From these equations, the function g+ is always positive when α < α+. Thus the critical

value a∗ is obtained as

a∗ =

√
69 + 11

√
33

12
. (D.1.8)

D.2 Proof of jrot > 0

According to equation (2.3.24), we define the following function

f(x) = 2α − 5αx + 5x2 − 2x3, (D.2.1)

where the definition of α and x are given in equations (D.1.1) and (D.1.2), respectively.

This function has the extremum at

x± =
5 ±

√
25 − 30α

6
. (D.2.2)

When α ≥ 5/6, the function f does not have a extremum. Since the function f is the

cubic function and the sign of x3 is minus, f decreases monotonically. The both end of

the function f are

f(x = 0) = 2α ≥ 0, (D.2.3)

and

f(x = α) = 2α(1 − α2) ≥ 0. (D.2.4)
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a
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f(x)
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x- x+a

2a(1-a2)

2a

f(x)

0

Figure D.2: Left: Profile of the function f for α > 5/6. Since both bound is positive and
the function f decreases monotonically, f is positive. Right: Profile of the function f for
α < 5/6.

Thus the function f is always positive for α > 5/6 (see Fig. D.2).

When α < 5/6, x+ is larger than α as

x+ =
5 +

√
25 − 30α

6
≥ 5

6
> α. (D.2.5)

and x− is smaller than α as

α − x− =
1

6

[
−(5 − 6α) +

√
5(5 − 6α)

]
≥ 0. (D.2.6)

Since f(0), f(α) > 0 and f is the cubic function, f(x) is always positive when f(x−) > 0

(see, Fig. D.2).

The function F (α) ≡ f(x+) and its derivatives are given by

F (α) =
1

54

[
125 − 117α − 5

√
5(5 − 6α)

3
2

]
, (D.2.7)

dF (α)

dα
= −13

6
+

5

6

6 − 5α√
1 − 6α/5

, (D.2.8)

d2F (α)

dα2
= −5

2

1√
1 − 6α/5

. (D.2.9)

The function F (α) has a local maximum at a = 76/125 < 5/6 and its derivative decreases

monotonically. Since F (α = 0) = 0 and F (α = 5/6) = 55/108, the function F (α) is

positive in the range 0 ≤ α ≤ 5/6. Thus the function f(x) is positive when 0 ≤ x ≤ α ≤ 1.



Appendix E

The Virial Theorem of the
Self-similar Relativistic MHD

The virial theorem in non-relativistic MHD was derived by Chandrasekhar & Fermi (1953).

Low (1982) applied it to the expanding magnetic loops by evaluating the surface term.

Landau & Lifshitz (1975) derived the theorem for a relativistic case in elegant way by

integrating the energy momentum tensor. In this appendix, we derive the virial theorem

for a relativistic self-similar MHD.

We start from the equations of motion in self-similar stage given by (2.1.36). Taking

the inner product with r and integrating it within a volume V , we obtain∫
dV

[
Γ

Γ − 1

pγ2v2(r · er)

r
− r · ∇p + r · (ρeE + j × B) − GMγρ

r2
(r · er)

]
= 0. (E.0.1)

The first term is the thermal inertial term Uin and the forth term is the gravitational

potential energy W . Integrating the second term by parts, we obtain∫
dV r · ∇p = −3(Γ − 1)Uth +

∫
pr · dA (E.0.2)

where A is a closed surface of the volume V . The third term can be rewritten by using

the Maxwell equations as follows,∫
V

dV [r · (ρeE + j × B)] = −
∫

dV
∂

∂t
(r · S) −

∫
dV r · (∇ · σ), (E.0.3)

where S and σ are the Poynting flux and the Maxwell’s stress tensor, respectively. Note

that the time derivative cannot be exchanged with the integration with volume in the

first term since the volume V changes with time.

The second term on the right hand side of equation (E.0.3) has a form

−
∫

dV r·(∇·σ) = UE+UM+
1

8π

∫ {
2 [(r · E)(E · dA) + (r · B)(B · dA)] − (E2 + B2)(r · dA)

}
,

(E.0.4)

106



107

where UE and UM are the electric and magnetic energies given by equations (2.3.5) and

(2.3.6), respectively. By using these results, we obtain the virial theorem for the relativistic

self-similar MHD;

3(Γ − 1)Uth + Uin + UM + UE + W = H + S, (E.0.5)

where

H =

∫
pr · dA − 1

8π

∫ {
2 [(r · E)(E · dA) + (r · B)(B · dA)] − (E2 + B2)(r · dA)

}
,

(E.0.6)

and

S =

∫
dV

∂

∂t

(
r · E × B

4π

)
. (E.0.7)

Here, K is the kinetic energy given by equation (2.3.2).

Readers may wonder why the thermal inertial term appears. Actually, the kinetic,

thermal, and thermal inertial energies should not be considered separately because they

depend on the frame of reference. Even so, we used this definition in chapter 2.2 to make

clear the difference between the non-relativistic and relativistic expansions. We can easily

figure out that the total plasma energy can be described as the sum of these energies, as

K + Uth + Uin =

∫
dV

[(
ρ +

Γ

Γ − 1
p

)
γ2 − p

]
. (E.0.8)



Appendix F

Magnetic Reconnection in a Forming
Current Sheet

In Chapter 4, we showed the results of 2-dimensional PIC simulations of the relativistic

magnetic reconnection assuming a preexisting current sheet at the initial state. The

magnetic reconnection is driven by the external electric fields. In this chapter, we study

how the magnetic reconnection takes place in a forming current sheet. For this purpose,

we performed 2-dimensional PIC simulations without postulating the initial current sheet.

F.1 Initial Model

Simulation region is a 2-dimensional box in the X − Y plane. We assumed a collisionless

pair plasma.

We adopted the model studied by Mikic et al. (1988) as the initial condition. The

initial magnetic fields are given by

Bx = −B0 cos(y − Ly/2) exp(−kyx),

By = B0 sin(y − Ly/2) exp(−kyx),

Bz = 0, (F.1.1)

where Ly is the box size in Y direction and ky = 2π/Ly. A schematic picture of the initial

condition is shown in Fig. F.1.

Since the magnetic field given by equation (F.1.1) is the potential field, plasma dis-

tributes homogeneously in coordinate space and isotropic in momentum space. The initial

plasma temperature is T = 0.01mc2. The ratio of the gyro frequency to the plasma fre-

quency is unity. The grid size ∆ and the time step is normalized by the gyro radius rg
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V B0

X

Y

Z

Figure F.1: Schematic picture of the initial condition for the expanding magnetic loops.
Simulations are performed in the X − Y plane. The initial magnetic fields are in the
X − Y plane, while the shear flow at X = 0 is in Z direction.

and the gyro frequency Ωg, respectively. We set ∆ = 0.2rg. The number of mesh points is

(Nx, Ny) = (4096, 256) and the corresponding simulation box size is −25.6 ≤ X/rg ≤ 25.6

and 0 <= Y/rg
<= 819.2. The number density at the initial state is 50 pairs per cell.

We imposed a shear flow at the footpoints of the magnetic loops (X = 0). The profile

of the shear velocity is given by

Vz = V0 sin(2kyy). (F.1.2)

The maximum shear velocity is 0.3c. The electric fields at the footpoints of the magnetic

loops are calculated by E = −V × B/c. The induced electric field is calculated at each

time step. The boundary condition is periodic in Y direction and absorbing boundary in

X = Xmax = 819.2rg. We use more grids in X direction to avoid the wave reflection at

X = Xmax.
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X/rg

Y/
r g

X/rg

Y/
r g

X/rg

Y/
r g

Figure F.2: Color contours show the plasma density and the curves show the magnetic
field lines at t = 0, 368, 700Ω−1

c from top to bottom, respectively. The plasma density is
normalized by that of the initial value.
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X/rg

Y/
r g

X/rg

Y/
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Figure F.3: Snapshots at t = 368Ω−1
g . Color contours show the toroidal magnetic fields

(top panel), and the current density jx, while the curves show the magnetic field lines in
both panels.

F.2 Results

Fig. F.2 shows the evolution of the magnetic loops. Color contours show the plasma

density, while the curves show the magnetic field lines at t = 0, 368, 700Ω−1
c from top to

bottom, respectively. After the shear injection, current circuits along the magnetic field

lines are created by the induced electric field. The electric currents along the magnetic

field lines create the Z component of (toroidal) magnetic fields obeying the Faraday’s law.

The direction of the toroidal magnetic fields coincides with that of the shear flow. These

mechanism can be explained as that the magnetic field lines are frozen in to the plasma.

The toroidal magnetic fields exert the Lorentz force on the current along the magnetic

field lines. This force leads to the expansion of the magnetic loops (the expansion by the

magnetic pressure). The expansion speed ∼ 0.2c is comparable to the shear velocity at

the footpoints.

Fig. F.3 shows the snapshot at t = 368Ω−1
g . Color contours show the toroidal (Z

component of the ) magnetic fields (top panel) and the charge current jx (bottom). Curves

show the magnetic field lines. Fig. F.4 shows the profile of the magnetic pressure at
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Figure F.4: Magnetic pressure by the
poloidal (blue curve) and toroidal (red
curve) components at X = 20rg. Horizontal
axis shows Y/rg. The total magnetic pres-
sure is plotted in black curve.

Figure F.5: Time evolution of the current
density at X = 20rg. Horizontal axis shows
Y/rg. Black curve is at t = 520Ω−1

g , while
the red one is at t = 700Ω−1

g

X = 20rg. Inside the magnetic loops, the magnetic pressure by the toroidal component

is dominant to that of the poloidal (X and Y ) component. The magnetic pressure by the

toroidal magnetic field is sandwiched by that by poloidal magnetic fields. This structure

satisfies the pressure balance in Y direction.

Note that the charge current jx is created ahead of the loop top (see the bottom panel

of Fig. F.3). Subsequently, magnetic fields Bz weaker than that inside the magnetic loops

also appear. This magnetic field is generated by the Weibel instability (Weibel 1959).

Behind the loop top, since the magnetic field lines are swept up due to the expansion, the

magnetic field strength becomes strong. The ambient plasma (distributed forward the

magnetic loops) is reflected at the loop top by the induced electric fields, E = −v×B/c.

An anisotropy of the distribution function in the momentum space then arises between

the ambient and reflected plasmas. The interaction between these plasmas can generate

the magnetic fields in parallel to increasing the entropy.

Due to the expansion of the magnetic loops, the magnetic field lines become anti-

parallel. A resulting current sheet is created inside the magnetic loops. Fig. F.5 shows

the evolution of the electric current (jz) at X = 20rg. Horizontal axis shows Y/rg. The

black curve is at t = 520Ω−1
g , while the red one is at t = 700Ω−1

g . The current sheet

is elongated in X direction due to the expansion as well as thinning in Y direction and

increasing in the current density. When the thickness of the current sheet is of order the

gyro radius, the magnetic reconnection takes place.
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Figure F.6: Snapshot at t = 700Ω−1
g when the magnetic reconnection takes place. Color

contours show the plasma density (top panel) and Ez/B (bottom panel). White curves
show the magnetic field lines in both panels. Black curves in the bottom panel shows the
contour of Ez/B.

Figure F.7: Spacial distribution of the accelerated particles with the energy ≥ 5mc2. The
red marks show the particles which Z component of the momentum is larger than other
components, while blue and orange marks do those whose momentum component parallel
to the X − Y plane is dominant, respectively.
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Figure F.8: Energy spectrum at t = 700Ωg. Black curve shows the spectrum of all
particles, while red and blue curves do that around the acceleration region (40 ≤ X/rg ≤
65, −2 ≤ Y/rg ≤ 2) and the outflow region (65 < X/rg ≤ 90, −2 ≤ Y/rg ≤ 2),
respectively.

When the magnetic reconnection takes place, a strong electric field is induced by

liberating the magnetic energy. Fig. F.6 shows the snapshot at t = 700Ω−1
g when the

magnetic reconnection takes place. Color contours show the plasma density (top panel)

and Ez/B (bottom panel). The white curves show the magnetic field lines , while the

black curves in the bottom panel show the contours of Ez/B. Around (X,Y ) = (55, 0)

(acceleration region), strong electric fields (|Ez/B > 1|) are induced by the magnetic

reconnection. This indicates that the electric field does not vanish in any reference frame

and thus the MHD condition is violated. In such region, particles are strongly accelerated

by the electric field in Z direction. The accelerated particles escape from the acceleration

region by deflecting their orbits by the local magnetic field. These particles form plasmoids

which are ejected into ±X direction (see the top panel in Fig. F.6). The outflow velocity

∼ 0.8c is close to the local Alfvén velocity. The maximum inflow velocity is ∼ 0.2c. The

plasmoid moving in X direction induces the electric field by E = −v×B/c. The induced

electric field distributes more diffusively than that induced by the magnetic reconnection.

Its field strength is smaller than that of the magnetic fields (|Ez/B < 1).

Fig. F.7 shows the spacial distribution of the accelerated particles. Red marks show

the particles whose Z component of the momentum is larger than other components,

while blue and orange marks do those whose X and Y component of the momentum are

dominant, respectively. These particles have energy larger than 5mc2. The high energy

particles are mainly distributed around the X point.
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Fig. F.8 shows the energy spectrum at t = 700Ω−1
g . The black curve shows the

spectrum of all particles, while the red and blue ones do that around the acceleration

region (40 ≤ X/rg ≤ 65, −2 ≤ Y/rg ≤ 2) and the outflow region (65 < X/rg ≤ 90,

−2 ≤ Y/rg ≤ 2), respectively. Note that each spectrum is almost the same in high energy

part (γ > 5). This indicates that the particles are mainly accelerated by the reconnection

electric fields.

F.3 Summary & Discussions

We performed 2-dimensional PIC simulations for the pair plasma to study the current

sheet formation in magnetic loops by shear flows and resulting magnetic reconnection.

Magnetic field lines are twisted in the direction parallel to the shear flow. Inside the

magnetic loops, the toroidal component of the magnetic field parallel to the shear flow

dominates that of the poloidal component. Due to the enhanced magnetic pressure, mag-

netic loops expand in the direction perpendicular to the velocity gradient. The expansion

speed is almost the same as the shear velocity. The magnetic field lines become anti-

parallel inside the magnetic loops due to the expansion and form a current sheet between

the anti-parallel magnetic fields. The current sheet is elongated in the direction perpen-

dicular to the velocity gradient. The current sheet becomes thinner as well as increasing

the current density. When the thickness of the current sheet is of order the gyro radius,

the magnetic reconnection takes place.

The electric field induced by the magnetic reconnection can strongly accelerate parti-

cles. The accelerated particles escape from the acceleration region since their orbits are

deflected by the magnetic fields. The escape (accelerated) particles form the plasmoids

ejecting in ±X directions. The plasmoids also induce the electric field E = v×B/c which

distributes more diffusively than that induced by the magnetic reconnection. Particles

are mainly accelerated by the electric field induced by the magnetic reconnection.

We showed that magnetic fields are generated ahead of the magnetic loops through

the Weibel instability when the magnetic loops expand. Hededal et al. (2004) performed

3-dimensional PIC simulation of unmagnetized shocks for electron-ion plasma and showed

that the electrons are accelerated when the Weibel instability is developed. When the

instability grows, the ion and electron channels are created, which are responsible for

generation of the magnetic fields. Since the ions have a larger inertia, the ion channel

is more stable than that of electrons. When the electron flows into the ion channel,
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electron is accelerated by the electric fields. This acceleration cannot be expected in our

simulation since we treat the pair plasma. The current channels merge each other faster

in electron-positron plasma than in electron-ion plasma. When we include the ions, they

can be accelerated ahead of the magnetic loops.

Another acceleration mechanism through the Weibel instability has been proposed by

Zenitani & Hesse (2008b). They showed that the instability is developed in the recon-

nection jets. When the magnetic reconnection takes place, the plasma is ejected from the

acceleration region. The interaction between the ejected particles and the ambient plasma

triggers the growth of the Weibel instability. The orbits of the accelerated particles are

deflected by the Weibel magnetic fields. The particles interact with the piled-up mag-

netic field (reconnected magnetic field) and are further accelerated by the electric field

E = −v × B/c. This mechanism seems to be working ahead of the magnetic loops. The

particles deflected their orbits by the generated magnetic fields continuously interact with

the magnetic loops. Since the magnetic field is strong at the loop top, the particles can

be accelerated by the induced electric fields.
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